博碩士論文 945201052 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:30 、訪客IP:3.144.33.41
姓名 陳岳毅(Yueh-Yi Chen)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 以砷化鎵為基材在1060nm波段側向接面超螢光白光二極體
(GaAs-based transverse current injection light emitting diodes at the wavelength 1060nm)
相關論文
★ 氮化鎵串接式綠光發光二極體在超高溫(200 ℃)操作的高速表現之和其內部之載子動力學★ 32Gbit/s 低耗能 850nm InAlGaAs 應變量子井面射型雷射
★ 具有大面積且在高靈敏度、低暗電流操作下具有頻寬增強效應的10 Gbit/sec平面式 InAlAs 累增崩潰光二極體★ 應用串接式技術達到超高飽和電流-頻寬乘積(7500mA-GHz,75mA,100GHz)的近彈道傳輸光偵測器
★ 利用鋅擴散方式在半絕緣(GaAs)基板上製作可室溫操作、高速且低漏電流的InAs光檢測器★ 應用超寬頻光子傳送混波器達到遠距分佈及調變的20Gbit/s無誤碼無線振幅偏移調變資料傳輸於W-頻帶
★ 具有同時高速資料傳輸及產生直流電功率的 砷化鎵/磷化銦鎵的雷射功率轉換器★ 超高速(>1Gb/s)可見光發光二極體應用於塑膠光纖通訊及內部載子動力學的研究
★ 具有超低耗能,傳輸資料量比值在850nm波段超高速(40 Gb/s)面射型雷射★ 超高速(~300GHz)光偵測器的製造與其在毫米波生物晶片上的應用
★ 超高速覆晶式(>300GHz)高功率(~mW)光偵測器製作與量測★ 具有單空間模態,低發散角,高功率的鋅擴散二維850nm面射型雷射陣列
★ 應用於850到1550 nm波長光連結且 具有高速,高效率和大面積的p-i-n光偵測器★ 應用於中距離(2km)至短距離光連結知單模態、高速、高輸出光功率的850nm波段面射型雷射
★ 應用在光連接具有高可靠度高速(>25Gbit/sec) 850光波段的垂直共振腔雷射★ 具有高可靠度/高功率輸出與直流到次兆赫茲 (≧300GHz)操作頻寬的超高速光偵測器和其覆晶式封裝設計與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在本論文裡,我們比較了側向p-n接面與一般垂直p-n接面元件之特性,一般的垂直接面發光二極體,在多重量子井中會有載子分佈不均勻的問題,可藉由側向接面元件消除,側向接面元件展現了穩定且平坦的光譜頻寬,在大偏壓電流操作下,3-dB頻寬為165nm,中心波長在1060nm附近,其3-dB頻寬對擴散深度及加入的偏壓電流不敏感,且頻寬有飽和之現象,此說明載子均勻分佈之重要性。
摘要(英) In this thesis, we compared performance of our demonstrated transverse p-n junction devices to those traditional vertical ones. The nonuniform carrier distribution problem that occurs in the multiple quantum wells (MQWs) of traditional vertical p-n junction LEDs can be totally eliminated by introducing a transverse p-n junction with MQWs combining with different emission wavelengths. These devices exhibit stable, flattened, and invariant broadband optical spectrum with maximum 3-dB bandwidth of 165nm around the wavelength of 1.06μm under a large bias current operation. The bandwidths of devices are not sensitive to diffusion depth and bias currents, revealing the improvement of uniform distribution of carriers.
關鍵字(中) ★ 側向接面
★ 超螢光發光二極體
★ 砷化鎵
關鍵字(英) ★ superluminescent diode
★ GaAs
★ transverse junction
論文目次 摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 v
表目錄 vii
第一章 簡介 1
1-1 光學同調斷層攝影(Optical Coherence Tomography,OCT) 3
1-2 光學同調斷層攝影光源波長 5
第二章 理論 7
2-1 超螢光二極體基本考量 8
2-2 使用側向接面之目的 11
2-3 量子井設計 15
第三章 元件製程 18
第四章 量測結果與分析 25
4-1 不同擴散時間的發光二極體特性 26
4-2 側向接面雷射 31
第五章 結論 35
參考文獻 36
參考文獻 [1] Brett E. Bouma, Guillermo J. Tearney, Handbook of Optical Coherence Tomography, Marcel Dekker, INC.
[2] A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser,” Optical coherence tomography – principles and applications”, Rep. Prog. Phys., Vol. 66, pp. 239-303, 2003
[3] D.Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science, Vol. 254, pp.1178-1181, 1991.
[4] A. F. Fercher, E. Roth, “Ophthalmic laser interferometry,” Proceedings of SPIE, Vol. 658, pp. 48-51, 1986
[5] Carmen Puliafitomet al., Optical Coherence Tomography of Ocular Diseases, Slack Inc,1996
[6] Grrreats WS , “Ocular spectral characteristics as related to hazards from laser and other light sources”. Am J Ophthalmol, vol. 66 ,pp. 15-20, 1968
[7] Yimin Wang, J. Stuart Nelson, Zhongping Chen, “Optimal wavelength for ultrahigh-resolution optical coherence tomography,” Optics Express, vol. 11 , pp.1411-1417,2003
[8] R. C. Yougquist, S. Carr, and D. E. N. Davies, “Optical coherence-domain reflectomerty : a new optical evaluation technique,” Opt. Lett., vol. 12, pp. 158-160, 1987
[9] W. Drexler, U. Morgner, F. X. Kartner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto,” In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett., Vol. 24, pp.1221-1223, 1999
[10] J. K. Ranka, R. S. Windeler, amd A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800nm”, Opt. Lett. Vol. 25, pp. 25-27, 2000
[11] I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, and J. G. Fujimoto, “Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,” Opt. Lett., Vol. 26, pp. 608-610, 2001
[12] J. M. Schmitt, S. L. Lee, and K. M. Yang, “Optical coherence microscope with enhanced resolving power in thick tissue”, Optics Communications., Vol. 142, pp. 203-207, 1997
[13] Carla C. Rosa, Vladimir Shidlovski, John A. Rogers, Richard B. Rosen , and Adrian Gh. Podoleanu, “Broadband SLD based source for retina investigations”, Proceedings of SPIE, Vol. 5690,pp. 540-547, 2005
[14] Vladimir Shidlovski, Jay Wei,”Superluminescent Diodes for Optical Coherence Tomography,” Proceedings of SPIE, Vol. 4648 , pp. 139-147, 2002
[15] C. F. Lin and B. L. Lee,”Extremely broadband AlGaAs/GaAs superluminescent diodes,” Appl. Phys. Lett., Vol. 71, pp.1598-1600, 1997
[16] C. E. Dimas, H. S. Djie and B. S. Ooi, “Superluminescent diodes using quantum dots superlattice”, J. Cryst. Growth, Vol. 288, pp.153-156, 2006
[17] H. S. Djie, C. E. Dimas, and B. S. Ooi, “Wideband quantum-dash-in-well superluminescent diode at 1.6um,” IEEE Photon. Technol. Lett., Vol. 18,pp. 1747-1749,2006
[18] M. L. Osowski, T. M. Cockerill, R. M. Lammert, D. V. Forbes, D. E. Ackley, and J. J. Coleman, “A strained layer InGaAs-GaAs-AlGaAs single quantum well broad spectrum LED by slective-area metalorganic chemical vapour deposition,” IEEE Photon Technol. Lett., Vol. 6, pp. 1289-1291, 1994
[19] B. S. Ooi, K. Mcllvaney, M. W. street, A. Helmy, S. G. Ayling, A. C. bryce, J. H. Marsh, and J. S. Roberts, “Selective quantum well intermixing in GaAs/AlGaAs structure using impurity-free vacancy diffusion,” IEEE J. Quantum Electron. , Vol. 33, pp. 1784-1793, 1997
[20] A. T. Semenov, V. K. Batovrin, I. A. Garmash, V. R. Shidlovsku, M. V. Shramenko, and S. D. Yakubovich,” (GaAl)As SQW superluminescent diodes with extremely coherence length,” Electron. Lett., Vol. 33, pp.315, 1995
[21] A. T. Semenov, L. A. Rivlin, S. D. Yakubovich, “Dynamics and spectra of semiconductor lasers”, J. Sov. Laser Research, Vol. 7, N 2, pp.57-206,1986
[22] N. S. K. kwong, K. Y. Lau, N. Bar-Chaim ,”High-power, high-efficiency GaAlAs superluminescent diode with integral absorber for lasing suppression.”, IEEE J. Quantum Electron.,QE-25,N 3,pp. 696-704, 1989
[23] B. D. Paterson, J. E. Epler, B. Graf, H. W. Lehmann, H. C. Sigg.,” A Superluminescent diodes at 1.3μm with very low spectral modulation.”, IEEE J. Quantum Electron., QE-30, N 3, pp.703-712, 1994
[24] A. T. Semenov, V. R. Shidlovski, S. A. Safin. , “Wide-spectrum SQW superluminescent diodes at 0.8μm with bent optical waveguide.”, Electron. Letts.,Vol. 29, N 10, pp.854-856, 1993
[25] T. Tokayama, O. Imafuji, Y. Koichi et al. , “100mW High-powe angle-stripe superluminescent diodes with new real refractive-index-guided self-aligned structure.”, IEEE Journal of Quantum Electron.,QE-32, N 11, pp. 1981-1987, 1996
[26] H. Yamazaki, A. Tomita, M. Yamaguchi, and Y. Sasaki, “Evidence of nonuniform carrier distribution in multiple quantum well lasers,” Appl. Phys. Lett., vol. 71, pp. 767–769, 1997.
[27] B.-L. Lee, C.-F. Lin, L.-W. Laih, andW. Lin , “Experimental evidence of nonuniform carrier distribution in multiple-quantum-well laser diodes,” Electron. Lett., vol. 34, pp. 1230–1231, 1998.
[28] C.-F. Lin, B.-R. Wu, L.-W. Laih, and T.-T. Shih, “Sequence influence of nonidentical InGaAsP quantum wells on broadband characteristics of semiconductor optical amplifiers/superluminescent diodes,” Opt. Lett., vol. 26, pp. 1099–1101, 2001.
[29] M. J. Hamp, D. T. Cassidy, B. J. Robinson, Q. C. Zhao, D. A. Thompson, and M. Davies, “Effect of barrier height on the uneven carrier distribution in asymmetric multiple-quantum-well InGaAsP lasers,” IEEE Photon. Technol. Lett., vol. 10, pp. 1380–1382, Oct. 1998.
[30] M. J. Hamp, D. T. Cassidy, B. J. Robinson, Q. C. Zhao, and D. A.Thompson, “Effect of barrier thickness on the carrier distribution in asymmetric multiple-quantum-well InGaAsP lasers,” IEEE Photon. Technol. Lett., vol. 12, pp. 134–136, Feb. 2000.
[31] C.-F. Lin, Y.-S. Su, C.-H. Wu, and G. S. Shmavonyan, “Influence of separate confinement heterostructure on emission bandwidth of InGaAsP superluminescent diodes/semiconductor optical amplifiers with nonidentical multiple quantum wells,” IEEE Photon. Technol. Lett., vol. 16, no. 6, pp. 1441–1443, Jun. 2004.
[32] Y. J. Yang, Y. C. Lo, G. S. Lee, K. Y. Hsieh, and R. M. Kolbas, “Transverse junction stripe laser with a lateral heterobarrier by diffusion enhanced alloy disordering,” Appl. Phys. Lett., vol. 49, pp. 835–837, Oct.1986.
[33] J. W. Shi, T. J. Hung, Y. Y. Chen. Y. S. Wu, Wei Lin, Ying Jay Yang, “InP-Based Transverse Junction Light-Emitting Diodes for White-Light Generation at Infrared Wavelengths,” IEEE Photon. Technol. Lett. Vol. 18, No. 19, 2006
指導教授 許晉瑋(Jin-Wei Shi) 審核日期 2007-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明