參考文獻 |
[1] J.R. Wolpaw, N. Birbaumer, D.J. McFarland, G. Pfurtscheller, and T.M. Vaughan, "Brain-computer interfaces for communication and control," Clin. Neurophysiol., vol. 113, pp. 767-791, 2002.
[2] T.M. Vaughan, W.J. Heetderks, L.J. Trejo, W.Z. Rymer, M. Weinrich, M.M. Moore, A.Kubler, B.H. Dobkin, N. Birbaumer, E. Donchin, E.W. Wolpaw, and J.R. Wolpaw, "Brain-computer interface technology: A review of the second international meeting," IEEE Trans. Rehabil. Eng., vol. 11, pp. 94-109, 2003.
[3] B. Blankertz, K.R. Müller, G. Curio, T.M. Vaughan, G. Schalk, J.R. Wolpaw, A. Schloegl, C. Neuper, G. Pfurtscheller, T. Hinterberger, M. Schroeder, and N. Birbaumer, "The BCI competition 2003: Progress and perspectives in detection and discrimination of EEG single trials," IEEE Trans. Biomed. Eng., vol. 51, pp. 1044-1051, 2004.
[4] S.P. Levine, J.E. Huggins, S.L. BeMent, R.K. Kushwaha, L.A. Schuh, M.M. Rohde, E.A. Passaro, D.A. Ross, K.V. Elisevich, and B.J. Smith, "A direct brain interface based on event-related potentials," IEEE Trans. Rehabil. Eng., vol. 8, pp. 180-185, 2000.
[5] G. Pfurtscheller et al., "Current trends in Graz brain-computer interface (BCI) research," IEEE Trans. Rehab. Eng., vol. 8, pp. 216-219, 2000.
[6] A. Kostov, and M. Polak, "Parallel man-machine training in development of EEG based cursor control," IEEE Trans. Rehab. Eng., vol. 8, pp. 203-205, 2000.
[7] M. Cheng, X.R. Gao, S.K. Gao, and D.F. Xu, "Design and Implementation of a Brain-Computer Interface With High Transfer Rates," IEEE Trans. Biomed. Eng., vol. 49, pp. 1181-1186, 2002.
[8] Y.J. Wang, R.P. Wang, X.R. Gao, B. Hong, and S.K. Gao, "A practical VEP-based brain-computer Interface," IEEE Trans. Rehab. Eng., vol. 14, pp. 234-239, 2006.
[9] P.L. Lee, C.H. Wu, J.C. Hsieh, and Y.T. Wu, "Visual evoked potential actuated brain computer interface: a brain-actuated cursor system," Electronics Letters, vol. 41, 2005.
[10] J.V. Odom, M. Bach, C. Barber, M. Brigell, M.F. Marmor, A.P. Tormene, G.E. Holder, and Vaegan, "Visual evoked potentials standard," Doc. Ophthalmologica, 108, pp. 115-123, 2004.
[11] E.E. Sutter, "The brain response interface: communication through visually-induced electrical brain response," Journal of Microcomputer Applications, vol. 15, pp. 31-45, 1992.
[12] P.R. Kennedy, R.A.E. Bakay, M.M. Moore, K. Adams, and J. Goldwaithe, "Direct control of a computer from the human central nervous system," IEEE Trans. Rehab. Eng., vol. 8, pp. 198-202, 2000.
[13] S.P. Levine et al., "A direct brain interface based on event -related potentials," IEEE Trans. Rehab. Eng., vol. 8, pp. 180-185, 2000.
[14] P.J. Cilliers and A.J.W. Van Der Kouwe, "A VEP-based computer interface for C2-quadriplegics," IEEE Med. Biol. Eng., vol. 15, pp. 1263-1264, 1993.
[15] American Encephalographic Society. Guideline thirteen, " Guidelines for standard electrode position nomenclature," Clin. Neurophysiol., vol. 11, pp. 111-113, 1994.
[16] S.T. Morgan, J.C. Hansen, and S.A. Hillyard, "Selective attention to stimulus location modulates the steady-state visual evoked potential," Proc. Nat. Acad. Sci. USA, vol. 93, pp. 4770-4774, 1996.
[17] D. Regan, Human Brain Electrophysiology: Evoked potentials and evoked magnetic fields in science and medicine. North Holland, The Netherlands: Elsevier, 1987.
[18] M. Middendorf, G. McMillan, G. Calhoun, and K.S. Jones, "Brain-computer interfaces based on the steady-state visual-evoked response," IEEE Trans. Rehab. Eng., vol. 8, pp. 211-214, 2000.
[19] G.R. Müller-Putz, R. Scherer, C. Brauneis, and G. Pfurtscheller, "Steady-state visual evoked potential (SSVEP) -Based communication: Impact of harmonic frequency components," Journal of Neural Engineering, vol. 2, pp. 123-130, 2005.
[20] S.P. Levine, J.E. Huggins, S.L. BeMent, R.K. Kushwaha, L.A. Schuh, E.A. Passaro, M.M. Rohde, and D.A. Ross, "Identification of electrocorticogram patterns as the basis for a direct brain interface," Clin. Neurophysiol., vol. 16, pp. 439-447, 1999. |