博碩士論文 945901001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:45 、訪客IP:52.15.212.243
姓名 陸曉文(Siao-Wun Lu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 具寬頻操作及可程式化責任週期之數位同步電路
(A Wide-Range Digital Synchronous Buffer with Programmable Duty Cycle)
相關論文
★ 一種應用於觸控液晶顯示器的新型嵌入式開關★ 多重相位之延遲鎖定迴路倍頻器設計與分析
★ 2.5Gbps串列收發器設計★ 具低抖動與可適應式頻寬之自我偏壓鎖相迴路設計
★ 應用於串列傳輸之2.5GB/s CMOS 超取樣資料回復電路★ 全數位任意責任週期之同步映射延遲電路
★ 全數位式互補金屬氧化半導自我取樣延遲線電路用於時脈抖動量測★ 500MHz,30個相位輸出之鎖相迴路應用於三倍超取樣時脈回復系統
★ 設計於90奈米製程輸出頻率為100MHz-1GHz之具可適應性頻寬鎖相迴路★ 高解析度可變動責任週期之同步複製延遲電路
★ 奈米CMOS晶片內序列傳輸之接收器★ 奈米CMOS晶片內序列傳輸之送器
★ 基於鎖相迴路之多重相位脈波產生器★ 低能量時脈儲存元件之分析、設計與量測
★ 具有預先增強器之Gbps串列連結傳送器及全數位超取樣資料回復器★ 應用於10Gbps晶片系統傳輸鏈之低抖動自我校準鎖相迴路設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在現今單晶片系統設計的晶片中,含大量電路及廣佈時脈訊號網路,因此同步系統時脈是一個重要的考量,時脈偏斜所造成時脈不同步現象將嚴重威脅系統運作的正確性,而在許多電路設計架構中,除了時脈訊號同步的問題外,時脈訊號之責任週期(Duty Cycle, DC)也需要被精準的控制,以提高某些電路操作之可靠度、正確性,例如管線系統、雙倍取樣率記憶體(Double Data Rate, DDR )、雙取樣類比對數位轉換器(Double-Sampling ADC)等,在高頻時責任週期準確度與時脈同步將更重要。因此鎖相迴路(Phase-Locked Loop, PLL)和延遲鎖定迴路(Delay- Locked Loop, DLL)被提出用於相位的校準,而脈波寬度控制迴路(Pulse Width Control Loop, PWCL)則被提出用於校正責任週期。
本論文提出了具寬頻操作及可程式化責任週期之數位同步電路(A Wide-Range Digital Synchronous Buffer with Programmable Duty Cycle),此電路結合同步電路及脈波寬度控制迴路,以數位的方式設計同步電路,以改善鎖相迴路和延遲鎖定迴路鎖定時間較長的問題,採用高線性度可預設脈波寬度之脈波寬度控制迴路校正脈波寬度及程式化輸出責任週期。電路中利用頻率偵測器控制多段延遲線達到縮減電路面積、較寬的操作頻率以及節省功率消耗的效果,並使用額外的單擊電路取代原始單純的延遲線,使可程式化責任週期之數位同步電路的輸入脈波寬度範圍增加至10%~90%。
具寬頻操作及可程式化責任週期之數位同步電路使用CMOS 0.18μm 1.8V製程並進行HSPICE模擬,操作頻率能夠操作在200MHz ~ 600MHz之間。當輸入頻率為600MHz時,輸入脈波寬度範圍可從10%到83%,而在200MHz時,輸入脈波寬度範圍可從10%到90%。輸出責任週其可由數位程式控制從35%到70%,其間格為5%。此電路完成相位及脈波寬度鎖定時間小於250ns,其鎖定後相位誤差小於±17ps及責任週期誤差小於±1% 。省電模式的功率消耗在600MHz時為12.3mW,比未加省電機制時減少了35.9%,核心面積約為0.11mm^2。
摘要(英) In view of the current SOC systems, a great deal of circuits is integrated on a chip and the clock signal is entirely distributed to synchronize the SOC systems. The clock synchronization circuits, hence, become an important issue. Clock skew will seriously influence system operating correctness. In addition to clock skew issue, the clock duty cycle also needs precise control to improve the reliability and correctness of circuit operation in some circuits, such as pipeline system, DDR, double-sampling ADC, etc. The clock synchronization and the precision of duty cycle are more important in high frequency applications. Therefore, phase-locked loop (PLL) and delay-locked loop (DLL) have been applied in many systems to deskew the clock phase. The pulsewidth control loop (PWCL) can be used to correct the clock duty cycle.
In this thesis, a wide-range digital synchronous buffer with programmable duty cycle is proposed. This digital synchronous buffer combines digital synchronized delay circuit with the PWCL. The digital synchronized delay circuit solves the long tracking time problem of PLL and DLL. The high linearity PWCL with programmable duty cycle correction correct and program output duty cycle. The multi-band delay lines are used to reduce the chip area, widen the operation frequency and save power consumption. The one shot circuit adds in the delay line to make wide-range digital synchronous buffer achieve high input duty cycle range from 10% to 90%.
The wide-range digital synchronous buffer with programmable duty cycle is implemented in 0.18μm CMOS 1.8V process. Based on HSPICE simulation, the operation frequency range is form 200MHz to 600MHz. The input duty cycle range is from 10% to 83% in 600MHz and from 10% to 90% in 200MHz. The preset output duty cycle range is form 35% to 70% in steps of 5%. The locking time is less than 250ns when phase and duty cycle are locked. The phase error is less than ±17ps and the duty cycle error is less than ±1%. The power consumption is 12.3mW in save power mode that is less than normal mode about 35.9%. The core area is about 0.11mm^2.
關鍵字(中) ★ 延遲鎖定迴路
★ 同步映射延遲電路
★ 脈波寬度控制迴路
★ 鎖相迴路
關鍵字(英) ★ Delay- Locked Loop
★ Synchronous Mirror Delay
★ Pulse Width Control Loop
★ Phase-Locked Loop
論文目次 第一章 緒論1
1.1背景及研究動機1
1.2論文架構2
第二章 脈波寬度控制迴路及同步映射延遲電路簡介4
2.1 脈波寬度控制迴路(PulseWidth Control Loop, PWCL)4
2.1.1 傳統型脈波寬度控制迴路4
2.1.2 低電壓型脈波寬度控制迴路6
2.1.3 互補型脈波寬度控制迴路7
2.1.4 快速鎖定型脈波寬度控制迴路7
2.1.5 單一路徑型泵脈波寬度控制迴路9
2.1.6 高線性度快速鎖定型脈波寬度控制迴路10
2.2 同步映射延遲電路(Synchronous Mirror Delay, SMD)10
2.2.1傳統型同步映射延遲電路10
2.2.2內插型同步映射延遲電路12
2.2.3 直接偵測時脈歪斜型同步映射延遲電路13
2.2.4 寬頻型同步映射延遲電路14
2.2.5 面積縮減型同步映射延遲電路14
2.2.6 逐次近似計算型同步映射延遲電路15
2.2.7 全數位式任意責任週期型同步映射延遲電路16
2.2.8 二擇一週期型同步映射延遲電路17
第三章 具寬頻操作及可程式化責任週期之數位同步電路設計與
動作原理19
3.1脈波寬度控制電路架構19
3.1.1 多組控制電路(Multi-Stage Control Stage)20
3.1.2 數位控制充電泵
(Digital-Controlled Charge Pump)21
3.1.3 穩定性分析23
3.2 數位同步電路架構(Digital Synchronous Circuit, DSC)24
3.2.1 適應性延遲監測電路
(Adaptive Delay Monitor Circuit)25
3.2.2 測量延遲線、映射控制電路及可變延遲線27
3.2.3 適延遲監測補償電路(DMC Compensate Circuit)28
3.3具寬頻操作及可程式化責任週期之數位同步電路設計
與分析28
3.3.1 脈波產生電路(Pulse Generator)31
3.3.2 d2方塊內部電路32
3.3.3 頻率偵測器(Frequency Detector)33
3.3.4 粗調及微調機制33
第四章 具寬頻操作及可程式化責任週期之數位同步電路晶片實
現與模擬38
4.1 晶片佈局圖38
4.2 具寬頻操作及可程式化責任週期之數位同步電路模擬結果39
4.3 電路規格與比較57
4.4 測試考量61
第五章 結論63
5.1 總結63
5.2 未來改進的方向63
參考文獻64
參考文獻 [1]Fenghao Mu and Christer Svensson, “Pulse Width Control Loop in high-speed CMOS clock buffers,” IEEE J. Solid-State Circuits, vol. 35, pp. 134 – 141, Feb. 2000.
[2]P.H. Yang and J.S. Wang, “Low-voltage Pulse Width Control Loops for SOC applications,” IEEE J. Solid-State Circuits, vol. 37, pp. 1348 – 1351, Oct. 2002.
[3]Wei-Ming Lin and Hong-Yi Huang, “A low-jitter mutual-correlated Pulse Width Control Loop circuit,” IEEE J. Solid-State Circuits, vol. 39, no. 8, pp. 1366 – 1369, Aug. 2004.
[4]Sung-Rung Han and Shen-Iuan Liu, “A 500-MHz-1.25-GHz fast-locking Pulse Width Control Loop with presettable duty cycle,” IEEE J. Solid-State Circuits, vol. 39, no. 3, pp. 463 – 468, Mar. 2004.
[5]Sun-Rung Han and Shen-Iuan Liu, “A single-path Pulse Width Control Loop with a built-in delay-locked loop,” IEEE J. Solid-State Circuits, vol. 40, no. 5, pp. 1130 – 1135, May 2005.
[6]Kuo-Hsing Cheng, Chia-Wei Su, Kai-Fei Chang, Cheng-Liang Hung, and Wei-Bin Yang, “A high linearity and fast-locked Pulse Width Control Loop with digitally programmable output duty cycle for wide range operation,” IEEE European Solid-State Circuits Conference, pp. 178-181, Sept. 2006.
[7]T.Saeki, Y. Nakaoka, M. Fujita, A. Tanaka, K. Nagata, K. Sakakibara, T. Matano, Y. Hoshino, K. Miyano, S. Isa, E. Kakehashi, J.M.Drynan, M. Komuro, T.Fukase, H. Iwasaki, J. Sekine, M. Igeta, N. Nakanishi, T. Itani, K. Yoshide, and Yoshi, ”A 2.5 ns clock access 250 MHz 256 Mb SDRAM with a Synchronous Mirror Delay,” IEEE International Solid-State Circuits Conference, pp.374-375, Feb. 1996
[8]T.Saeki, Y. Nakaoka, M. Fujita, A. Tanaka, K. Nagata, K. Sakakibara, T. Matano, Y. Hoshino, K. Miyano, S. Isa, S Nakazawa, E. Kakehashi, J.M.Drynan, M. Komuro, T.Fukase, H. Iwasaki, M. Takenaka, J. Sekine, M. Igeta, and N. Nakanishi, ”A 2.5-ns clock access, 250-MHz, 256-Mb, SDRAM with Synchronous Mirror Delay,” IEEE J. Solid-State Circuites, vol. 31, no. 11, pp. 1656-1668, Nov. 1996.
[9]T.Saeki, H.Nakamura, and J. Shimizu, ”A 10ps jitter 2 clock cycle lock time Cmos digital clock generator based on an interleaved Synchronous Mirror Delay scheme,” IEEE Symp. on VLSI Circuits, pp.109-110, Jun. 1997.
[10]T.Saeki, K. Minami, H. Yoshida, and H.Suzuki, ”A direct-skew-detect Synchronous Mirror Delay for application-specific integrated circuits,” IEEE J. Solid-State Circuits, vol. 34, no. 3, pp. 372-379, Mar. 1999.
[11]Jeong-Seok Chae, Daejeong Kim, Dong Myeong Kim, ”Wide range sigle-way-pumping Synchronous Mirror Delay ,” Electronics Letters, pp. 939-940, May 2000.
[12]Kihyuk Sung, Byung-Do Yang, Lee-Sup Kim, ”Low power clock generator based on an area-reduced interleaved Synchronous Mirror Delay scheme,” IEEE Int. Symp.circuits and Systems, vol. 3, pp. 671-674, May 2002.
[13]Kihyuk Sung and Lee-sup Kim, ”A high-resolution Synchronous Mirror Delay using successive approximation register,” IEEE J. Solid-State Circuits, vol. 39, no. 11, pp. 1997-2004, Nov. 2004.
[14]Cheng-Liang Hung, Chen-Lung Wu, Kuo-Hsing Cheng, ”Arbitrary duty cycle synchronous mirror delay circuits design ,” IEEE Asian Solid-State Circuits Conference, pp. 283-286, Nov. 2006.
[15]Hiroaki Nakaya, Yasuhiko Sasaki, Naoki Kato, Fumio Arakawa, and Toru Shimizu, ”An alternative cyclic synchronous mirror delay for versatility in highly Integrated SoC ,” IEEE Asian Solid-State Circuits Conference, pp. 279-282, Nov. 2006.
[16]Chin-Hao Chen, “A fast-locking and low-jitter all digital Delay-Locked Loop,” NCCU MS. Thesis, July 2003.
[17]Yong Jin Yoon, Hyuck In Kwon, Jong Duk Lee, Byung Gook Park, Nam Seog Kim, Uk Rae Cho, Hyun Guen, ”Synchronous Mirror Delay for Multiphase Locking ,” IEEE J. Solid-State Circuits, vol. 39, pp. 150-156, Jan. 2004.
[18]You-Jen Wang; Shao-Ku Kao; Shen-Iuan Liu; “All-digital Delay-Locked Loop/Pulse Width Control Loop with adjustable duty cycles” IEEE J. Solid-State Circuits, vol. 41, no. 6, pp. 1262-1274, June 2006.
指導教授 鄭國興(Kuo-Hsing Cheng) 審核日期 2008-1-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明