博碩士論文 955201010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:66 、訪客IP:18.217.128.108
姓名 陳濟祥(Chi-Hsiang Chen)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 高精準度且快速鎖定之任意責任週期之時脈同步電路
(A high precision fast locking arbitrary duty cycle clock synchronization circuit)
相關論文
★ 一種應用於觸控液晶顯示器的新型嵌入式開關★ 多重相位之延遲鎖定迴路倍頻器設計與分析
★ 2.5Gbps串列收發器設計★ 具低抖動與可適應式頻寬之自我偏壓鎖相迴路設計
★ 應用於串列傳輸之2.5GB/s CMOS 超取樣資料回復電路★ 全數位任意責任週期之同步映射延遲電路
★ 全數位式互補金屬氧化半導自我取樣延遲線電路用於時脈抖動量測★ 500MHz,30個相位輸出之鎖相迴路應用於三倍超取樣時脈回復系統
★ 設計於90奈米製程輸出頻率為100MHz-1GHz之具可適應性頻寬鎖相迴路★ 高解析度可變動責任週期之同步複製延遲電路
★ 奈米CMOS晶片內序列傳輸之接收器★ 奈米CMOS晶片內序列傳輸之送器
★ 基於鎖相迴路之多重相位脈波產生器★ 低能量時脈儲存元件之分析、設計與量測
★ 具有預先增強器之Gbps串列連結傳送器及全數位超取樣資料回復器★ 應用於10Gbps晶片系統傳輸鏈之低抖動自我校準鎖相迴路設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在系統晶片中,訊號同步電路扮演越來越重要的角色,鎖相迴路(Phase-Locked Loop, PLL)和延遲鎖定迴路(Delay-Locked Loop, DLL)被廣泛地運用在晶片設計裡,但是,此兩種電路在使用上需要考慮到幾個問題,第一,由於上述兩種電路屬於閉迴路系統,產生頻寬方面的問題,需要考慮電路穩定性的問題。第二,電路需要花數十到數百個時脈週期才能完成相位鎖定,在鎖定過程中需要較大的功率消耗,於是,同步複製延遲電路被設計出來,藉此改善上述的缺點。
傳統的同步複製延遲電路有三個主要的缺點,首先,電路的相位誤差會受到輸出負載改變的影響而加大。其次,輸入訊號的責任週期受到限制。最後,則是因為單位元件延遲時間太大導致電路的解析度不足。受到上述的缺點影響,導致傳統的同步延遲電路僅能應用在記憶體模組。
本論文提出一高精準度且快速鎖定之任意責任週期之時脈同步電路,不僅擁有同步複製延遲電路的優點:快速鎖定與低功率消耗,並且輸入與輸出訊號間之相位誤差≦29 ps,輸入訊號的責任可以任意調變(25%~75%),此外,相位誤差不會因為輸出負載的改變而增加。並以TSMC 0.13μm CMOS製程實現晶片,供應電壓為1.2V,操作在最高頻率600MHz時的功率消耗為2.4mW。核心電路的面積(不含I/O PAD)為0.039mm2 ,輸出訊號之最大抖動量(peak-to-peak jitter)為25.2 ps。在論文的後半段會有量測結果,以證明提出的新電路確實改善了上述的缺點。
摘要(英) Clock synchronization plays a important role in designing VLSI circuit. Phase-Locked loop (PLL) and delay-locked loop (DLL) are often applied in many synchronization-dependent systems in order to suppress the clock skew. However, these circuits have to consider some problems in using. First, PLL and DLL have issues of bandwidth because they are both closed loop systems. For this reason, they need to consider the stability of circuits. Second, they consume a lot of power in the process of locking. Consequently, the synchronous mirror delay circuit (SMD) was developed to improve the drawbacks.
However, there are some drawbacks in conventional SMD. First, the phase error will increase because of the output loading. Next, the duty cycle of input signal is limited. Finally, the poor resolution is due to the delay cell. These shortcomings will limit the application of the SMD.
A high precision fast locking arbitrary duty cycle clock synchronization circuit is proposed in the thesis, which not only keeps the advantage of SMD but the phase error between the input signal and output signal is less than 29 ps (simulated). And the tuning range of input signal’s duty cycle is 25% ~75%. Furthermore, the static phase error will not increase as the output loading changes. The test chip is fabricated in a 0.13-μm CMOS process and the supply voltage is 1.2V. It consumes 2.4mW when the operating frequency is 600MHz. The active area (without I/O PAD) is 0.039 mm2 , and the peak-to-peak jitter is 25.2 ps. There will be experimental results in latter half component of the thesis, which confirms the proposed circuit has improved certainly the drawbacks of SMD.
關鍵字(中) ★ 快速鎖定
★ 任意責任週期
★ 時脈同步
關鍵字(英) ★ fast locking
★ arbitrary duty cycle
★ clock synchronization
論文目次 摘要 ………………………………………………………………I
Abstract …………………………………………………………Ⅱ
目錄……………………………………………………………… Ⅲ
圖目錄 ……………………………………………………………V
表目錄………………………………………………………………VII
第1章 緒 論 1
1.1 研究動機 1
1.2 研究目的及用途 3
1.3 論文架構 4
第2章 相關電路的分析 5
2.1 同步複製延遲電路 5
2.2 傳統式同步複製延遲電路 7
2.3 插入式同步複製延遲電路 9
2.4 省面積的插入式同步複製延遲電路 11
2.5 直接誤差偵測型同步複製延遲電路 13
2.6 混合式同步複製延遲電路 14
2.7 逐步近似式同步複製延遲電路 15
2.8 任意責任週期之同步複製延遲電路 17
2.9 電路特性比較 18
第3章 高精準度且快速鎖定之任意責任週期之時脈同步電路 19
3.1 設計概念 19
3.2 電路架構及操作 20
3.3 粗調延遲電路 21
3.3.1 邊緣偵測器 23
3.3.2 量測延遲電路及改良式複製控制電路 24
3.3.3 可調延遲電路 25
3.4 細調延遲電路 26
3.4.1 細微延遲電路 27
3.4.2 相位比較器 28
3.4.3 逐漸近似暫存器 29
3.5 電路的操作頻率 30
第4章 電路的模擬與量測 32
4.1 簡介 32
4.2 子電路之模擬 32
4.2.1 D型正反器 32
4.2.2 改良式複製控制電路 33
4.2.3 相位比較器 36
4.2.4 逐漸近似暫存器 38
4.3 新型時脈同步電路之特性分析 40
4.3.1 輸出負載的影響 40
4.3.2 輸入訊號的責任週期 41
4.3.3 操作頻率及精確度 42
4.4 實驗晶片之量測 46
4.5 量測結果 48
4.6 總結 52
第5章 結 論 53
5.1 結論 53
5.2 未來改進的方向 55
參考文獻 56
參考文獻 [1] Takanori Saeki, Yuji Nakaoka, Mamoru Fujita et al, “A 2.5-ns Clock Access 250-MHz 256-Mb SDRAM with A Synchronous Mirror Delay,” IEEE International Solid-State Circuits Conference Dig. Tech. Paper, pp. 374-375, Feb. 1996.
[2] Takanori Saeki, Yuji Nakaoka, Mamoru Fujita et al, “A 2.5-ns Clock Access, 250-MHz, 256-Mb SDRAM with Synchronous Mirror Delay,” IEEE J. Solid-State Circuits, vol. 31, no 11, pp. 1656-1668, Nov. 1996.
[3] Takanori Saeki, Hideyuki Nakamura, and Junzoh Shimizu “A 10ps Jitter 2 Clock Cycle Lock Time Cmos Digital Clock Generator Based on An Interleaved Synchronous Mirror Delay Scheme,” Symposium on VLSI Circuits, Dig. Tech. Paper, pp. 109-110, Jun. 1997.
[4] Takanori Saeki, Koichiro Minami, Hiroshi Yoshida, and Hisamitsu Suzuki “The direct skew detect synchronous mirror delay (Direct SMD) for ASICs,” Custom Integrated Circuits Conference, pp. 511-514, May 1998.
[5] Takanori Saeki, Koichiro Minami, Hiroshi Yoshida, and Hisamitsu Suzuki “A direct-skew-detect synchronous mirror delay for application-specific integrated circuits,” IEEE J. Solid-State Circuits, vol. 34, no 3, pp. 372-379, Mar. 1999.
[6] Kihyuk Sung, Byung-Do Yang, and Lee-Sup Kim “Low Power Clock Generator Based on An Area-reduced Interleaved Synchronous Mirror Delay Scheme,” IEEE International Symposium on Circuits and Systems, vol. 3, pp. 671-674, May 2002.
[7] Kihyuk Sung, Byung-Do Yang, and Lee-Sup Kim “Low Power Clock Generator Based on Area-reduced Interleaved Synchronous Mirror Delay,” Electronics Letters, vol. 38, no.9, pp. 399-400, Apr. 2002
[8] Daeyun Shim, Dong-Yun Lee, Sanghun Jung, Chang-Hyun Kim, and Wonchan Kim “An Analog Synchronous Mirror Delay for High-speed DRAM Application,” IEEE J. Solid-State Circuits, vol. 34, no 4, pp. 484-493, Apr. 1999.
[9] Daeyun Shim, Yeon-Jae Jung, Seung-Wook Lee, and Wonchan Kim “Fast Locking Clock Generator Using Analog Synchronous Mirror Delay Technique with Feedback Control,” International Conference on Solid-State and Integrated-Circuits Technology, vol. 2, pp. 1125-1127, Oct. 2001.
[10] Seong-Jin Jang, Young-Hyun Jun, Jae-Goo Lee, and Bai-Sun Kon “ASMD With Duty Cycle Correction Scheme for High-Speed DRAM,” Electronics Letters, vol. 37, no.16, pp. 1004-1006, Aug. 2001.
[11] Sei Hyung Jang “A New Synchronous Mirror Delay With An Auto-Skew-Generation circuit,” IEEE International Symposium on Circuits and Systems, Vol. 5, pp. 397-400, May 2003.
[12] Tae-Sung Kim, Sung-Ho Wang, and Beomsup Kim “A Low Jitter, Fast Locking Delay Locked Loop Using Measure And Control Scheme,” Mixed-Signal Design, SSMSD, Southwest Symposium on, pp. 45-50, Feb. 2001.
[13] Jeong-Seok Chae, Daejeong Kim, and Dong Myeong Kim “Wide Range Single-Way-Pumping Synchronous Mirror Delay,” Electronics Letters, vol. 36, no.11, pp. 939-940, May 2000.
[14] Kihyuk Sung and Lee-Sup Kim “A High-resolution Synchronous Mirror Delay Using Successive Approximation Register,” IEEE J. Solid-State Circuits, vol. 39, no 11, pp. 1997-2004, Nov. 2004.
[15] Yong Jin Yoon, Hyuck In Kwon, Jong Duk Lee, Byung Gook Park, Nam Seog Kim, Uk Rae Cho, and Hyun Guen Byun “Synchronous Mirror Delay For Multiphase Locking,” IEEE J. Solid-State Circuits, vol. 39, no 1, pp. 150-156, Jan. 2004.
[16] Chih-Hao Sun and Shen-Iuan Liu “A Mixed-Mode Synchronous Mirror Delay Insensitive To Supply And Load Variations,” Journal Of Analog Integrated Circuits And Signal Processings, vol. 39, pp. 75-80, Apr. 2004.
[17] Yi-Ming Wang and Jinn-Shyan Wang “A Low-power Half-Delay-Line Fast Skew-Compensation Circuit,” IEEE J. Solid-State Circuits, vol. 39, no 6, pp. 906-918, Jun. 2004.
[18] Kihyuk Sung and Lee-Sup Kim “A High-Resolution Synchronous Mirror Delay Using Successive Approximation Register,” IEEE J. Solid-State Circuits, vol. 39, no 11, pp. 1997-2004, Nov. 2004.
[19] Kuo-Hsing Cheng, Chen-Lung Wu, Yu-Lung Lo and Chia-Wei Su “A Phase-Detect Synchronous Mirror Delay For Skew-Compensation Circuit,” IEEE International Symposium on Circuits and Systems, vol.2, pp. 1070-1073, May 2005.
[20] Kuo-Hsing Cheng, Chen-Lung Wu, Chia-Wei Su and Yu-Lung Lo “A Phase-Locked Pulse Width Control Loop With Programmable Duty Cycle,” IEEE ASIA-PACIFIC Conference on ASIC, pp. 84-87, Aug. 2004.
[21] Hung, Cheng-Liang; Wu, Chen-Lung and Cheng, Kuo-Hsing “Arbitrary Duty Cycle Synchronous Mirror Delay Circuits Design,” IEEE Asian Solid-State Circuit Conference, pp. 283-286, Nov. 2006.
[22] Nakaya Hiroaki, Sasaki Yasuhiko, Kato Naoki, Arakawa Fumio and Shimizu Toru “An Alternative Cyclic Synchronous Mirror Delay for Versatility in Highly Integrated SoC,” IEEE Asian Solid-State Circuit Conference, pp. 279-282, NOV. 2006.
[23] Hong, Kai-Wei, Lee Chien-Hsien, Cheng Kuo-Hsing, Wu Chen-Lung and Yang Wei-Bin “A Variable Duty Cycle with High-Resolution Synchronous Mirror Delay,” IEEE International Conference on Electronics, Circuits and Systems, pp. 569-572, Dec. 2006.
[24] Tsung-Chu Huang, Gau-Bin Chang and Ling Li “Congruence Synchronous Mirror Delay,” IEEE International Symposium on Circuits and Systems, pp.2184-2187, May 2007.
[25] Zeng Xianjun, Ji Rong, Huang Shizhen, Chen Liang, Luo Gang and Zhang Junfeng “A Novel Clock Duty-Cycle Corrector of DSP Systems,” Congress on Image and Signal Processing, vol.2, pp.561-564, May 2008.
指導教授 鄭國興(Kuo-Hsing Cheng) 審核日期 2008-11-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明