博碩士論文 955201034 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:93 、訪客IP:3.138.181.42
姓名 陳翔祺(Sheng-Chi Chen)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 應用於Ka頻段射頻前端接收機電路之研製
(Implementation of RF Receiver Front-End Circuits for Ka-Band Applications)
相關論文
★ 應用於筆記型電腦數位電視單極天線之研製★ 應用於數位機上盒與纜線數據機之電纜多媒體傳輸標準多工濾波器
★ 印刷共面波導饋入式多頻帶與超寬頻天線設計★ 微波存取全球互通頻段前向匯入式功率放大器與高效率Class F類功率放大器暨壓控振盪器電路之研製
★ 應用於矽基功率放大器與混頻器之傳輸線型變壓器研究★ 應用於V-頻段射頻收發機前端電路之低功耗源極注入式混頻器之研製
★ 應用積體電路上方後製程與整合被動元件於互補式金氧半導體製程之系統封裝研究★ 應用fT-倍頻電路架構於毫米波壓控振盪器與注入鎖定除頻器之研製
★ 應用傳輸線型變壓器於X/K–Ka/V頻段全積體整合之寬頻互補式金氧半導體功率放大器研製★ 應用於K / V 頻段低功耗混頻器之研製
★ 應用於K/V頻段之低功耗CMOS低雜訊放大器之研究★ 應用於5-GHz CMOS射頻前端電路之低電壓自偏壓式混頻器與高線性化功率放大器之研製
★ 應用於 K 頻段射頻接收機之寬頻低功耗 CMOS 低雜訊放大器之研製★ 應用磁耦合變壓器於K頻段之低功耗互補式金氧半導體壓控振盪器研製
★ 應用於K頻段之單向化全積體整合功率放大器與應用於V頻段之寬頻功率放大器研製★ 應用於C/X頻段全積體整合之互補式金氧半導體寬頻低功耗降頻器與寬頻功率混頻器之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文以TSMC 0.18-μm CMOS與WIN 0.15-μm pHEMT製程,研製應用於Ka頻段之射頻前端接收機電路,內容為應用於Ka頻段之共平面波導低雜訊放大器、Ku頻段之轉導提升考畢茲壓控振盪器、Ku頻段之偏壓位準轉移壓控振盪器、K頻段與UNII頻段之低電壓操作壓控振盪器、K頻段之導納轉換壓控振盪器、Ka頻段之電流注入雙平衡吉爾伯特混頻器。
第一部分為共平面波導的低雜訊放大器,共平面波導的好處在可以減少基板厚度對電路特性的影響,並且使電路中的元件快速下地,減少走線效應,此放大器量測結果為:增益為13.9 dB,雜訊指數為4.3 dB,輸入反射損耗為8.5 dB,輸出反射損耗為14.6 dB,而輸入1 dB壓縮點為-3 dBm,三階截斷點為7 dBm,總功率消耗157.5 mW。
第二部分為四種壓控震盪器的設計,前兩種設計為搭配倍頻器的系統,第一種架構採用轉導提升的技巧,解決傳統傳統考畢茲電路不易起振的缺點,中心頻率為13.72 GHz,頻率可調範圍為812 MHz,輸出功率為-6 dBm ~ -3.6 dBm,離主頻1 MHz之相位雜訊為-113.8 dBc/Hz,振盪器本身消耗功率為4.1 mW,優化指數為-190.2 dBc/Hz;第二種架構採用偏壓位準轉移的方式,使電晶體維持在工作時候大多維持在飽和區以提升相位雜訊,中心頻率11.9 GHz,頻率可調範圍為656 MHz,輸出功率為-2.3 dBm ~ -0.4 dBm,離主頻1 MHz之相位雜訊為-111 dBc/Hz,振盪器本身消耗功率為4.5 mW,優化指數為-185.7 dBc/Hz。後兩種震盪器的設計為直接應用於混頻器,第一種架構採用源極-汲極耦合的變壓器,達到低電壓操作效能的壓控震盪器,本架構分別設計在兩個頻段,第一個設計在K頻段,中心頻率為22.85 GHz,頻率可調範圍為700 MHz,輸出功率為-9.1 dBm ~ -7.1 dBm,離主頻1 MHz之相位雜訊為-104.3 dBc/Hz,操作電壓為0.65 V,振盪器本身消耗功率為2.74 mW,優化指數為-187.02 dBc/Hz,第二個電路設計在UNII頻段,中心頻率為5.08 GHz,頻率可調範圍為280 MHz,輸出功率為-3.1 dBm ~ -0.6 dBm,離主頻1 MHz之相位雜訊為-114.18 dBc/Hz,操作電壓為0.4 V,振盪器本身消耗功率為2.1 mW,優化指數為-185.03 dBc/Hz;第二種架構採用導納轉換的技巧,將一般傳統的可變電容轉換成可變電感,有效降低變容器因高頻的損耗,使其在高頻容易起振,中心頻率為25.78 GHz,頻率可調範圍為290 MHz,輸出功率為-4.29 dBm ~ -3.48 dBm,離主頻1 MHz之相位雜訊為-104.2 dBc/Hz,振盪器本身消耗功率為7.8 mW,優化指數為-183.39 dBc/Hz。
第三部份為Ka頻帶之電流注入雙平衡吉爾伯特混頻器的設計,採用電流注入的機制,將流經本地源端的電流降低以保持電晶體開關切換速度,並且維持足夠射頻轉導級的電流以使放大輸入訊號,射頻的頻率為28 GHz,中頻的頻率為2.4 GHz,射頻頻率較本地端頻率高,量測結果顯示射頻訊號在28 GHz與中頻訊號在2.4 GHz返回損耗均為10 dB。本地端功率為2 dBm時得到最大轉頻增益為5.2 dB。射頻頻率3-dB操作頻寬6.6 GHz。中頻頻率3-dB操作頻寬為1 GHz。混頻器1 dB增益壓縮點為-4 dBm,三階截斷點為5 dBm;RF-LO、LO-IF及RF-IF隔離度均在30 dB以上。
摘要(英) This thesis describes the RF front-end receiver for Ka-Band applications which are implemented in WIN 0.15-μm pHEMT and TSMC 0.18-μm CMOS technologies. The implemented circuits include Ka-Band CPW LNA, Ku-Band gm-boosted Colpitts VCO, Ku-Band bias-level shifting VCO, K-Band with compared UNII-Band low voltage operation VCOs, K-Band admittance-transforming VCO, and Ka-Band current-bleeding double balanced Gilbert mixer.
The Ka-Band CPW LNA is presented in the first section. The performance of the circuit may be varied by the variation of substrate thickness. However, this can be released by using CPW transmission line. Moreover, CPW transmission line lets the components of the circuit directly connect to the ground, avoiding the degradation caused by the unnecessary metal runners. The designed CPW LNA achieves the power gain of 13.9 dB, noise figure of 4.3 dB, input/output return losses of 8.5 dB, and 14.6 dB. The input 1 dB power gain compression point (P1dB) and the input third-order interception point (IIP3) occur at -3 dBm and 7 dBm, respectively. The total power consumption is 157.5mW.
Four types of VCO are demonstrated in the second section. The former two types are indirectly applied for the mixer, needed to be series connected with the frequency doubler which doubling the output frequency. The frequency-doubled signal provided for mixer enables the frequency conversion. The first design is Ku-Band gm-boosting Colpitts VCO. By using the gm-boosting technique, the difficulty of the start-up condition in the conventional Colpitts oscillator can be relaxed. This design achieves the central frequency of 13.72 GHz, the tuning range of 812 MHz, and the output power range is from -6 to -3.6 dBm. The achieved FoM is -190.2 dBc/Hz which is calculated from the phase noise of -118 dBc/Hz at 1 MHz offset and the core power consumption of 4.1 mW. The second design is Ku-Band bias-level shifting VCO, letting the transistor working mostly in the saturation region by using bias-level shifting technique. This design achieves the central frequency of 11.9 GHz, the tuning range of 656 MHz, and the output power is the range of -2.3 dBm ~ -0.4 dBm. The FoM is high as -185.7 dBc/Hz which is calculated from the phase noise of -111 dBc/Hz at 1 MHz offset and the core power consumption of 4.5 mW.
The latter two type VCOs are directly applied for the mixer. The K-Band low-voltage operation VCOs with the drain-source coupled transformer are proposed for UNII band applications. The K-Band design achieves the central frequency of 22.85 GHz, the tuning range of 700 MHz, and the output power range from -9.1 to -7.1 dBm. The FoM is high as -187.02 dBc/Hz which is calculated from the phase noise of -104.3 dBc/Hz at 1 MHz offset and the core power consumption of 2.74 mW. Another UNII-Band VCO design achieves the central frequency of 5.08 GHz, the tuning range of 280 MHz, and the output power range from -3.1 to -0.6 dBm. The FoM is high as -185.03dBc/Hz which is calculated from the phase noise of -114.18dBc/Hz at 1 MHz offset and the core power consumption of 2.1 mW. The K-Band admittance-transforming VCO is presented. By this technique, the conventional capacitance varactor is transforming to the variable inductance and also releases the high-frequency loss from of the varactor. This design achieves the central frequency of 25.78 GHz, the tuning range of 290 MHz, and the range of the output power from -5.05 to -2.75 dBm. The FoM is high as -183.2 dBc/Hz, which is calculated from the phase noise of --103.4 dBc/Hz at 1 MHz offset and the core power consumption of 7.8 mW.
The Ka-Band current-bleeding double balanced Gilbert mixer is presented in the last section. The frequencies of LO and IF are selected at 25.6 GHz and 2.4 GHz, respectively. By using the current-bleeding technique, the current through the LO stage is reduced, keeping fast switching on and off of the LO stage transistor. And the input RF signal is still amplified before mixed with LO due to the constant current through RF stage. The measured RF and IF return losses are around 10 dB. The optimized power of LO drive is 2 dBm which result in a maximum conversion gain of 5.2 dB. The 3-dB bandwidths of RF and IF are high as 6.6 GHz and 1 GHz, respectively. The P1dB and IIP3 are -5 dBm and +4 dBm, respectively. The port to port isolations of RF-LO, LO-IF and RF-IF are better than 30 dB.
關鍵字(中) ★ 社頻接收機
★ 低雜訊放大器
★ 混頻器
★ 壓控震盪器
★ Ka頻段
關鍵字(英) ★ RF receiver
★ LNA
★ Mixer
★ VCO
★ Rx
★ Ka-band
論文目次 Chinese Abstract......................................Ⅰ
Abstract..............................................Ⅲ
Acknowledgement.......................................Ⅵ
Table of Contents.....................................Ⅷ
List of Figures......................................ⅩⅠ
List of Tables.......................................ⅩⅥ
Chapter 1 Introduction................................1
1.1 Motivation.........................................1
1.2 Achievements.......................................3
1.3 Thesis Organization................................5
Chapter 2 Low Noise Amplifier.........................6
2.1 Basics of the Low Noise Amplifier..................6
2.1.1 Important Parameters of the LNA..................7
2.2 Ka-Band FGCPW LNA.................................12
2.3 Simulated and Measured Results....................16
2.4 Conclusion........................................21
Chapter 3 Voltage Controlled Osciallator.............23
3.1 Basics of the Voltage Controlled Oscillator.......23
3.1.1 Typical Topologies..............................28
3.1.2 Important Parameters of the VCO.................32
3.1.3 Noise in Oscillator.............................34
3.2 Ku-Band Gm-Boosting Colpitts VCO..................40
3.2.1 Gm-Boosting Concept and Circuit Topology........40
3.2.2 Simulated and Measued Results...................43
3.2.3 Conclusion......................................48
3.3 Ku-Band Bias-Level Shifting VCO...................49
3.3.1 Transformer for Bias-Level Shifting and Circuit Topology..............................................49
3.3.2 Simulated and Measued Results...................53
3.3.3 Conclusion......................................57
3.4 K-Band Low-Voltage Operation VCO..................58
3.4.1 Transformer for Low-Voltage Operation and Circuit Topology..............................................58
3.4.2 Simulated and Measued Results of K-Band Work....61
3.4.3 Simulated and Measued Results of UNII-Band Work.66
3.4.4 Conclusion of two works.........................70
3.5 K-Band Admittance-Transforming VCO................71
3.5.1 Admittance-Transforming Concept and Circuit Topology..............................................71
3.5.2 Simulated and Measued Results...................76
3.5.3 Conclusion......................................80
3.6 Comparisons of all designed VCOs..................81
Chapter 4 Mixer......................................83
4.1 Basics of the Mixer...............................83
4.1.1 Introduction to the Gilbert Mixer...............84
4.1.2 Important Parameters of the Mixer...............85
4.2 Ka-Band Current-Bleeding Gilbert Mixer............87
4.3 Simulated and Measued Results.....................93
4.4 Conclusion.......................................100
Chapter 5 Conclusion................................101
5.1 Conclusion of this thesis........................101
5.2 Future Work......................................103
Reference............................................104
參考文獻 [1] P. Smulders, “Exploiting the 60 GHz Band for Local Wireless Multimedia Access: Prospects and Future directions”, IEEE Commun. Mag., Vol. 2, No. 1, pp. 140-147, Jan. 2002.
[2] Federal Communications Commission, “Amendment of Parts 2, 15 and 97 of the Commission's Rules to Permit Use of Radio Frequencies Above 40 GHz for New Radio Applications”, FCC 95-499, ET Docket No. 94-124, RM-8308, Dec. 15, 1995.
[3] H. T. Friis, “Noise figure of radio receivers,” Proceedings on IRE, Vol. 32, No. 7, pp. 419-422, July 1944.
[4] B. Razavi, “RF Microelectronics, Prentice Hall”, Upper Saddle River, 1998.
[5] J. Rollet, “Stability and power gain invariants of linear two ports”, IRE Transactions on Circuit Theory, CT-9, pp. 29-32, March 1962.
[6] David M. Pozar, “Microwave Engineering,” John Wiley & Sons, 2005.
[7] Simons and Rainee, “Coplanar waveguide circuits, components, and systems,” John Wiley & Sons, 2001.
[8] X. Chen, J. Liu, J. Wang, “Ka-band AlGaAs/InGaAs PHEMT monolithic low-noise amplifier,” Millimeter Wave and Far Infrared Science and Technology Proc. 4th International Conference on , 12-15 , Aug. 1996.
[9] H.S. Chou, C.C. Liu, T.H. Chen, “Ka-band monolithic GaAs PHEMT low noise and driver amplifiers,” Microwave Conference, Asia-Pacific, APMC 2001,
vol. 1 , 3-6, Dec. 2001
[10] J. S. Yuk, B. G. Choi, C. S. Park, “Device and circuit optimization of PHEMT MMIC LNA for low power consumption,” Microwave Conference, Asia-Pacific APMC 2001. vol. 1, 3-6, Dec. 2001
[11] Mimino, Y.; Hirata, M.; Nakamura, K.; Sakamoto, K.; Aoki, Y.; Kuroda, S., “High gain-density K-band p-HEMT LNA MMIC for LMDS and satellite communication,” in Proc. IEEE RFIC Symp.,Vol. 1, pp. 17-20, June 2000.
[12] Gresham, I.; Noyan Kinayman; Jenkins, A.; Point, R.; Street, A.; Yumin Lu; Adil Khalil; Ito, R.; Anderson, R., “A fully integrated 24 GHz SiGe receiver chip in a low-cost QFN plastic package,” in Proc. IEEE RFIC Symp., pp. 11-13, June 2006.
[13] Floyd, B.A.; Shi, L.; Yuan Taur; Lagnado, I.; O, K.K., “A 23.8-GHz SOI CMOS tuned amplifier,” IEEE Trans. Microwave Theory Tech., vol. 50, issue 9, pp. 2193–2196, Sept. 2002.
[14] Yu Kyung-Wan; Lu Yin-Lung; Chang Da-Chiang ; Liang, V. ; Chang, M.F.; “K-band Low-Noise Amplifiers Using 0.18 µm CMOS Technology”, IEEE Microwave and Wireless Component Letter, vol. 14, no. 3, pp. 106-108, March 2004.
[15] Frank Ellinger, “Radio Frequency Integrated Circuits and Technologies, Dresden University of Technology”, Springer Press, 2007.
[16] B. Razavi, “Design of Analog CMOS Integrated Circuits,” McGraw-Hill, 2001.
[17] A. Hajimiri and T. H. Lee, “A General Theory of Phase Noise in Electrical Oscillators,” IEEE J. Solid-State Circuits, vol. 33, no. 2, pp. 179-194, Feb. 1998.
[18] Q. Huang, “Phase noise to carrier ratio in LC oscillators,” IEEE Trans. Circuits Syst. I, Reg. Paper, vol. 47, no. 7, pp. 965-980, Jul 2000.
[19] J. J. Rael and A. A. Abidi, “Physical Process of Phase Noise in Differential LC Oscillators,” IEEE Custom Integrated Circuits Conference, pp. 569-572, May 2000.
[20] X. Li; S. Shekhar, and D.J. Allstot, “Gm boosted common-gate LNA and differential colpitts VCO/QVCO in 0.18 um CMOS,” IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 40, pp. 2609-2619, DECEMBER 2005
[21] R. Aparicio and A. Hajimiri, “A Noise-Shifting Differential Colpitts VCO,” IEEE J. of Solid-State Circuits, vol. 37, no. 12, pp. 1728-1736, Dec. 2002.
[22] Taeksang Song, Sangsoo Ko, Dae-Hyung Cho, Han-Su Oh, Chulho Chung, and Euisik Yoon, “A 5GHz transformer-coupled CMOS VCO using bias-level shifting technique,” IEEE Radio Frequency Integrated Circuits Symposium, pp.127-130, June 2004
[23] K. Kwok and H. C. Luong, “ Ultra-Low- Voltage High-Performance CMOS VCOs Using Transformer Feedback” IEEE J. of Solid-State Circuits, vol. 40, no. 3, pp.652-660, March 2005.
[24] Hsieh-Hung Hsieh, Yu-Hsin Chen, and Liang-Hung Lu, “A Millimeter-Wave CMOS LC-Tank VCO With an Admittance-Transforming Technique,” IEEE Trans. Microwave Theory Tech., vol. 55, no.9, pp. 1854–1861, September. 2007
[25] C. H. Doan et al., “Millimter-wave CMOS design,” IEEE J. Solid-State Circuits, vol. 40, no. 1, pp. 144-155, Jan. 2005.
[26] C. Cao and K. K. O, “Millimter-wave voltagecontrolled oscillators in 0.13 m CMOS technology,” IEEE J. Solid-State Circuits, vol. 41, no. 6, pp. 1297-1304, Jan. 2006.
[27] L. Jia, J.-G. Ma, K. S. Yeo, and M. A. Do, “9.3-10.4-GHz-Band Cross-Coupled Complementary Oscillator With Low Phase-Noise Performance,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 4, pp. 1273–1278, Apr. 2004.
[28] T. K. K. Tsang and M. N. El-Gamal, “A High Figure of Merit and Area-Efficient Low-Voltage (0.7-1V) 12GHz CMOS VCO,” IEEE Radio Frequency Integrated Circuits Symposium., pp. 89-92, June 2003.
[29] N.-J. Oh and S.-G Lee, “11-GHz CMOS Differential VCO With Back-Gate Transformer Feedback,” IEEE Microwave and Wireless Components Letters, vol. 15, no. 11, pp.733–735, Nov. 2005
[30] S. Lo and S. Hong, “Noise Property of a Quadrature Balanced VCO,” IEEE Microwave and Wireless Components Letters, vol. 15, no. 10, pp.673–675, Oct. 2005.
[31] C. R. C. De Ranter and M. S. J. Steyaert, “A 0.25-μm CMOS 17 GHz VCO,” I. Solid-State Circuits, session 23, pp. 370-371, Feb 2001.
[32] S. Ko, J.-G. Kim, T. Song, E. Yoon, and S. Hong, “20 GHz Integrated CMOS Frequency Sources with a Quadrature VCO using Transformers,” in Proc. IEEE RFIC Symp., pp. 269-272, June 2004.
[33] T.-P. Wang, R.-C. Liu, H.-Y. Chang, L.-H. Lu, and H. Wang, “A 22-GHz Push-Push CMOS Oscillator Using Micromachined Inductors,” IEEE Microwave and Wireless Components Letters, vol. 15, no. 12, pp. 859–861, Dec. 2005.
[34] S. Lo and S. Hong, “Noise Property of a Quadrature Balanced VCO,” IEEE Microwave and Wireless Components Letters, vol. 15, no. 10, pp.673–675, Oct. 2005.
[35] A. W. L. Ng, G. C. T. Leung, K. C. Kwok, L. L. K. Leung, and H. C. Luong, “A 1V 24GHz 17.5mW PLL in 0.18 μm CMOS,” I. Solid-State Circuits, session 8, pp. 158-160, Feb. 2005.
[36] Zhenbiao Li and O. K. K., ”A Low-Phase-Noise and Low-Power Multiband CMOS Voltage Controlled Oscillator,” IEEE J. of Solid-State Circuits, vol. 40, no. 6, pp. 1296-1302, June 2005.
[37] C. M. Hung, B. Floyd, and K. K. O, “A Fully Integrated 5.35-GHz CMOS VCO and a Prescaler,” IEEE Trans. Microwave Theory Tech., vol. 49, no.1, pp. 17–22, Jan. 2001.
[38] T. Y. Kim, A. Adams, and N. Weste, “High Performance SOI and Bulk CMOS 5 GHz VCO’s,” in IEEE Radio Frequency Integrated Circuits Symp. Dig. Papers, Philadelphia, PA, pp. 93–96, Jun.2003.
[39] N. Fong, J. Plouchart, N. Zamdmer, D. Liu, L. Wagner, C. Plett, and N. Tarr, “Design of wide-band CMOS VCO for multiband wireless LAN applications,” IEEE J. of Solid-State Circuits, vol. 38, no. 8, pp.1333–1342, Aug. 2003.
[40] B. Min and H. Jeong, “5-GHz CMOS LC VCOs With Wide Tuning Ranges,” IEEE Microwave and Wireless Component Letter, vol. 15, issue 5, pp. 336-338, May 2005.
[41] Emad Hegazi, Henrik Sjoland and A. A. Abidi, “A Filtering Technique to Lower LC Oscillator Phase Noise,” IEEE J. of Solid-State Circuits, vol. 36, no. 12,. 1921-1930, December 2001.
[42] Ming-Da Tsai and Huei Wang, “A 0.3-25-GHz Ultra Wideband Mixer Using Commercial CMOS 0.18-μm technology,” IEEE Microwave and Wireless Component Letter, vol. 14, No 11 , pp. 522-524, November 2004.
[43] Jeng-Han Tsai, Pei-Si Wu, Chin-Shen Lin, Tian-Wei Huang, John G.. J. Chern, and Wei-Chu Huang, “A 25-75-GHz Broadband Gilbert-Cell Mixer Using 90-nm CMOS Technology,” IEEE Microwave and Wireless Component Letter, vol. 17, No 4 , pp. 247-249, April 2007.
[44] Leonard A. MacEachern, L.A., Tajinder Manku, “A Charge Injection Method gor Gilbert Cell Biasing,” Electrical and Computer Engineering, 1998. IEEE Canadian Conference, vol. 1, pp. 365-368, May 1998.
[45] Xiang Guan and Ali Hajimiri, “A 24-GHz CMOS Front-End,” IEEE J. of Solid-State Circuits, vol. 39, no. 2, pp. 368-373, February 2004.
[46] A. Verma, Li Gao, O., K. K., and J. Lin, “A K-band down-conversion mixer with 1.4-GHz bandwidth in 0.13-/spl mu/m CMOS technology,” IEEE Microwave and Wireless Component Letter, vol. 15, Issue 8 , pp. 493-495, Apugust 2005.
指導教授 邱煥凱(Hwann-Kaeo Chiou) 審核日期 2008-10-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明