博碩士論文 955201050 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:103 、訪客IP:18.223.203.68
姓名 王志宏(Jr-hung Wang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 1.1μm波長雙載子疊接式超螢光發光二極體
(Bipolar Cascade Superluminescent Diodes at the 1.1μm Wavelength Regime)
相關論文
★ 氮化鎵串接式綠光發光二極體在超高溫(200 ℃)操作的高速表現之和其內部之載子動力學★ 32Gbit/s 低耗能 850nm InAlGaAs 應變量子井面射型雷射
★ 具有大面積且在高靈敏度、低暗電流操作下具有頻寬增強效應的10 Gbit/sec平面式 InAlAs 累增崩潰光二極體★ 應用串接式技術達到超高飽和電流-頻寬乘積(7500mA-GHz,75mA,100GHz)的近彈道傳輸光偵測器
★ 利用鋅擴散方式在半絕緣(GaAs)基板上製作可室溫操作、高速且低漏電流的InAs光檢測器★ 應用超寬頻光子傳送混波器達到遠距分佈及調變的20Gbit/s無誤碼無線振幅偏移調變資料傳輸於W-頻帶
★ 具有同時高速資料傳輸及產生直流電功率的 砷化鎵/磷化銦鎵的雷射功率轉換器★ 超高速(>1Gb/s)可見光發光二極體應用於塑膠光纖通訊及內部載子動力學的研究
★ 具有超低耗能,傳輸資料量比值在850nm波段超高速(40 Gb/s)面射型雷射★ 超高速(~300GHz)光偵測器的製造與其在毫米波生物晶片上的應用
★ 超高速覆晶式(>300GHz)高功率(~mW)光偵測器製作與量測★ 具有單空間模態,低發散角,高功率的鋅擴散二維850nm面射型雷射陣列
★ 應用於850到1550 nm波長光連結且 具有高速,高效率和大面積的p-i-n光偵測器★ 應用於中距離(2km)至短距離光連結知單模態、高速、高輸出光功率的850nm波段面射型雷射
★ 應用在光連接具有高可靠度高速(>25Gbit/sec) 850光波段的垂直共振腔雷射★ 具有高可靠度/高功率輸出與直流到次兆赫茲 (≧300GHz)操作頻寬的超高速光偵測器和其覆晶式封裝設計與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在本論文裡,我們展示了雙載子疊接式超發光二極體利用在不同發光波長的量子井間,加入透納接面在不同發光波長的量子井之間,而元件中心波長約為1.04μm的生物光學治療之窗,我們元件引入透納接面,使得載子可以在不同的量子井間循環,把傳統式超螢光發光二極體因載子分佈不均勻而n側量子井沒有充分利用到的問題給減小,我們的元件展現出極小的漏電流,及克服了載子分佈不均勻的現象製作出一個應用在許多生物光學的近紅外白色光源。
摘要(英) In this thesis, we demonstrate for the first time GaAs-based bipolar cascade superluminescent diodes (BC-SLDs), whose active region is composed of GaAs-based multiple quantum wells (MQWs) in series by a tunnel junction, operates around important bio-optical therapeutic window of 1.04-um wavelength. Due to the tunnel junction introducing carrier recycling in different QWs, non-uniform carrier distribution among distinct MQWs, that is a problem in conventional SLDs, whose electroluminescent spectrum is governed by the center wavelength of QWs near p-side, can be minimized. Our devices exhibit nice electrical characteristic of low leaky current and overcome the limit of non-uniform carrier distribution, presenting a promising prospect for fabricating and engineering a near infrared white-light source in lots of bio-optical applications.
關鍵字(中) ★ 雙載子疊接式超螢光發光二極體 關鍵字(英) ★ Bipolar Cascade Superluminescent Diodes
論文目次 第一章 簡介..............................................1
1-1 導論 .................................................1
1-2 疊接式結構的應用......................................2
1-3延伸頻寬...............................................5
1-4 使載子分佈更為均勻....................................7
1-5 1.1um波長附近重要的應用---光學同調斷層攝影(Optical Coherence Tomography,OCT)................................9
1-6光學同調斷層攝影光源波長..............................11
第二章 理論.............................................13
2-1 超螢光二極體基本考量................................14
2-2 使用雙載子串接式結構之目的..........................17
2-3量子井設計............................................21
2-4雙載子串接式結構之基本原理............................25
第三章 元件製程.........................................28
第四章 量測結果與分析...................................37
4-1 在連續波操作下的發光二極體特性.......................38
4-2 雙載子疊接式超螢光發光二極體.........................44
第五章 結論.............................................52
參考資料.................................................53
附錄A....................................................57
量子井模擬Matlab.........................................57
參考文獻 [1] J. T. Getty, ”Bipolar Cascade Segmented Ridge Lasers, ” Ph. D. Thesis of electrical and computer engineering Santa Barbara, Sep., 2003.
[2] J.-W. Shi, J. –K. Sheu, C. –K. Wang, C. –C. Chen, C.-H. Hsieh, J. –I. Chyi, and W.-C. Lai, “Linear Cascade Arrays of GaN-Based, Green Light-Emitting Diodes for High-Speed and High-Power Performance,” IEEE Photon. Tech. Lett., vol. 19, no. 18, pp. 1368-1370, Sep., 2006.
[3] T. Knodl, M. Golling, A. Straub, R. Jäger, R. Michalzik, and K. J. Ebeling, ”Multistage Bipolar Cascade Vertical-Cavity Surface-Emitting Lasers: Theory and Experiment,” IEEE J. of Selec. Topic in Quan. Electron.,vol. 9, no. 5, pp.1406-1414, Sep. , 2003.
[4] J. P. Prineas, J. T. Olesberg, J. R. Yager, C. Cao, C. Coretsopoulos, and M. H. M.Reddy, “Cascaded active regions in 2.4 ?m GaInAsSb light-emitting diodes for improved current efficiency,” Appl. Phys. Lett. vol. 89, pp. 211108, Nov. , 2006.
[5] J. Yan, J. Cai, G. Ru, X. Yu, J. Fan and F. –S. Choa, “InGaAsP–InP Dual-Wavelength Bipolar Cascade Lasers,” IEEE Photon. Tech. Lett., vol. 18, no. 16, pp. 1777-1779, Aug., 2006.
[6] A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser,” Optical coherence tomography – principles and applications”, Rep. Prog. Phys., Vol. 66, pp. 239-303, 2003.
[7] D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science, Vol. 254, pp.1178-1181, 1991.
[8] A. F. Fercher, E. Roth, “Ophthalmic laser interferometry,” Proceedings of SPIE, Vol. 658, pp. 48-51, 1986.
[9] Carmen Puliafitomet al., Optical Coherence Tomography of Ocular Diseases, Slack Inc, 1996.
[10] Grrreats WS , “Ocular spectral characteristics as related to hazards from laser and other light sources”. Am J Ophthalmol, vol. 66 ,pp. 15-20, 1968.
[11] Yimin Wang, J. Stuart Nelson, Zhongping Chen, “Optimal wavelength for ultrahigh-resolution optical coherence tomography,” Optics Express, vol. 11 , pp.1411-1417, 2003.
[12] R. C. Yougquist, S. Carr, and D. E. N. Davies, “Optical coherence-domain reflectomerty : a new optical evaluation technique,” Opt. Lett., vol. 12, pp. 158-160, 1987.
[13] W. Drexler, U. Morgner, F. X. Kartner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, ” In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett., Vol. 24, pp.1221-1223, 1999.
[14] J. K. Ranka, R. S. Windeler, amd A. J. Stentz,“Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800nm”, Opt. Lett. Vol. 25, pp. 25-27, 2000.
[15] I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, and J. G. Fujimoto, “Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,” Opt. Lett., Vol. 26, pp. 608-610, 2001.
[16] J. M. Schmitt, S. L. Lee, and K. M. Yang, “Optical coherence microscope with enhanced resolving power in thick tissue”, Optics Communications., Vol. 142, pp. 203-207, 1997.
[17] Carla C. Rosa, Vladimir Shidlovski, John A. Rogers, Richard B. Rosen , and Adrian Gh. Podoleanu, “Broadband SLD based source for retina investigations”, Proceedings of SPIE, Vol. 5690, pp. 540-547, 2005.
[18] Vladimir Shidlovski, Jay Wei, ”Superluminescent Diodes for Optical Coherence Tomography,” Proceedings of SPIE, Vol. 4648 , pp. 139-147, 2002.
[19] C. F. Lin and B. L. Lee, ”Extremely broadband AlGaAs/GaAs superluminescent diodes,” Appl. Phys. Lett., Vol. 71, pp.1598-1600, 1997.
[20] C. E. Dimas, H. S. Djie and B. S. Ooi, Superluminescent diodes using quantum dots superlattice, J. Cryst. Growth, Vol. 288, pp.153-156, 2006
[21] H. S. Djie, C. E. Dimas, and B. S. Ooi, “Wideband quantum-dash-in-well superluminescent diode at 1.6um,” IEEE Photon. Technol. Lett., Vol. 18,pp. 1747-1749, 2006.
[22] M. L. Osowski, T. M. Cockerill, R. M. Lammert, D. V. Forbes, D. E. Ackley, and J. J. Coleman, “A strained layer InGaAs-GaAs-AlGaAs single quantum well broad spectrum LED by slective-area metalorganic chemical vapour deposition,” IEEE Photon Technol. Lett., Vol. 6, pp. 1289-1291, 1994.
[23] B. S. Ooi, K. Mcllvaney, M. W. street, A. Helmy, S. G. Ayling, A. C. bryce, J. H. Marsh, and J. S. Roberts, “Selective quantum well intermixing in GaAs/AlGaAs structure using impurity-free vacancy diffusion,” IEEE J. Quantum Electron. , Vol. 33, pp. 1784-1793, 1997.
[24] A. T. Semenov, V. K. Batovrin, I. A. Garmash, V. R. Shidlovsku, M. V. Shramenko, and S. D. Yakubovich,” (GaAl)As SQW superluminescent diodes with extremely coherence length,” Electron. Lett., Vol. 33, pp.315, 1995.
[25] A. T. Semenov, L. A. Rivlin, S. D. Yakubovich, “Dynamics and spectra of semiconductor lasers”, J. Sov. Laser Research, Vol. 7, N 2, pp.57-206, 1986.
[26] N. S. K. kwong, K. Y. Lau, N. Bar-Chaim , ”High-power, high-efficiency GaAlAs superluminescent diode with integral absorber for lasing suppression.”, IEEE J. Quantum Electron.,QE-25,N 3,pp. 696-704, 1989.
[27] B. D. Paterson, J. E. Epler, B. Graf, H. W. Lehmann, H. C. Sigg., ” A Superluminescent diodes at 1.3μm with very low spectral modulation.”, IEEE J. Quantum Electron., QE-30, N 3, pp.703-712, 1994.
[28] A. T. Semenov, V. R. Shidlovski, S. A. Safin. , “Wide-spectrum SQW superluminescent diodes at 0.8μm with bent optical waveguide.”, Electron. Letts.,Vol. 29, N 10, pp.854-856, 1993.
[29] T. Tokayama, O. Imafuji, Y. Koichi et al., “100mW High-powe angle-stripe superluminescent diodes with new real refractive-index-guided self-aligned structure.”, IEEE Journal of Quantum Electron.,QE-32, N 11, pp. 1981-1987, 1996.
[30] H. Yamazaki, A. Tomita, M. Yamaguchi, and Y. Sasaki, “Evidence of nonuniform carrier distribution in multiple quantum well lasers,” Appl. Phys. Lett., vol. 71, pp. 767–769, 1997.
[31] B.-L. Lee, C.-F. Lin, L.-W. Laih, andW. Lin , “Experimental evidence of nonuniform carrier distribution in multiple-quantum-well laser diodes,” Electron. Lett., vol. 34, pp. 1230–1231, 1998.
[32] C.-F. Lin, B.-R. Wu, L.-W. Laih, and T.-T. Shih, “Sequence influence of nonidentical InGaAsP quantum wells on broadband characteristics of semiconductor optical amplifiers/superluminescent diodes,” Opt. Lett., vol. 26, pp. 1099–1101, 2001.
[33] M. J. Hamp, D. T. Cassidy, B. J. Robinson, Q. C. Zhao, D. A. Thompson, and M. Davies, “Effect of barrier height on the uneven carrier distribution in asymmetric multiple-quantum-well InGaAsP lasers,” IEEE Photon. Technol. Lett., vol. 10, pp. 1380–1382, Oct., 1998.
[34] M. J. Hamp, D. T. Cassidy, B. J. Robinson, Q. C. Zhao, and D. A.Thompson, “Effect of barrier thickness on the carrier distribution in asymmetric multiple-quantum-well InGaAsP lasers,” IEEE Photon. Technol. Lett., vol. 12, pp. 134–136, Feb., 2000.
[35] L. A. Coldren and S. W. Corzine, “Diode Lasers and Photonic Integrated Circuits,” chapter 4, John Wiley & Sons, New York, 1995.
[36] C.-F. Lin, Y.-S. Su, C.-H. Wu, and G. S. Shmavonyan, “Influence of separate confinement heterostructure on emission bandwidth of InGaAsP superluminescent diodes/semiconductor optical amplifiers with nonidentical multiple quantum wells,” IEEE Photon. Technol. Lett., vol. 16, no. 6, pp. 1441–1443, Jun., 2004.
[37] F. Dross, F. van Dijk, and B. Vinter, “Optimization of Large Band-Gap Barriers for Reducing Leakage in Bipolar Cascade Lasers,” IEEE J. of Quantum Electron., vol. 40, no. 8, pp. 1003-1007, Aug., 2004.
[38] D. A. Neamen, “Semiconductor Physics and Devices,”chapter 8,McGraw-Hill.
[39] L. A. Coldren and S. W. Corzine, “Diode Lasers and Photonic Integrated Circuits,” chapter 2, John Wiley & Sons, New York, 1995.
[40] M. Sugo, Y. Shibata, H. Kamioka, M. Yamamoto and Y. Tohmori, “High-power (>50mW) and wideband (>50nm) 1.3?m super-luminescent diodes,” Electron. Lett., Vol. 41, no.8, 1993.
指導教授 許晉瑋(Jin-wei Shi) 審核日期 2008-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明