博碩士論文 955201051 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:18.227.105.83
姓名 鄭紹章(Shao-Chang Cheng)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 氮化鋁鎵/氮化鎵高電子移導率電晶體製作於矽基板與藍寶石基板之特性比較與應用電路
(Characteristics of AlGaN/GaN HEMT on silicon and sapphire substrates and its circuit applications)
相關論文
★ 增強型異質結構高速移導率電晶體大信號模型之建立及其在微波放大器之應用★ 空乏型暨增強型Metamorphic HEMT之製作與研究
★ 增強型與空乏型砷化鋁鎵/砷化銦鎵假晶格高電子遷移率電晶體: 元件特性、模型與電路應用★ 氧化鋁基板上微波功率放大器之研製
★ 氧化鋁基板上積體化微波降頻器電路之研製★ 順序特徵結構設計研究及其應用在特徵模子去耦合與最小特徵值靈敏度
★ 順序特徵結構設計研究及其應用在最大強健穩定度與最小迴授增益★ LDMOS功率電晶體元件設計、特性分析及其模型之建立
★ CMOS無線通訊接收端模組之設計與實現★ 積體化微波被動元件之研製與2.4GHz射頻電路設計
★ 異質結構高速移導率電晶體模擬、製作與大訊號模型之建立★ 氧化鋁基板微波電路積體化之2.4 GHz接收端模組研製
★ 氧化鋁基板上積體化被動元件及其微波電路設計與研製★ 二維至三維微波被動元件與射頻電路之設計與研製
★ CMOS射頻無線通訊發射端電路設計★ 次微米金氧半場效電晶體高頻大訊號模型及應用於微波積體電路之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 節省能源的議題在近年來越趨重要,一些日常電子產品,例如3G產品以及車用電子就必須降低能量散失,自80年代以來其皆為使用矽基板材料製作,但由於材料的限制,會有大量的熱消耗以及高頻損失。新興三五族材料如氮化鎵(GaN),在高頻的功率元件上發展迅速因為其具有高功率輸出、高電壓操作以及低切換損失之優點,此論文利用氮化鋁鎵/氮化鎵高電子移導率電晶體製作於矽基板以及藍寶石基板,應用於高轉換效率、高功率應用電路。氮化鎵電晶體由於壓電效應產生二維電子氣(2DEG),電子速度以及密度非常高,且導通電阻低並增加其切換速度。
但當此元件應用在高功率高電流情況會在通道產生熱效應,所以近幾年紛紛發展了氮化鎵成長在矽基板之技術,矽材料具有低成本以及高散熱係數之優點,熱效應使電流散失將會改善。本論文第三章使用了藍寶石以及矽基板製作閘極長度1.5 μm以及寬度1 mm功率電晶體,第四章與第五章分別將此元件應用在直流對直流升壓轉換器以及2.4 GHz功率放大器,直流升壓轉換器在車用方面將可提升效率以及高輸出功率轉換;而高效率之功率放大器將會減少能量的需求以及冷卻系統的成本,皆對節省能源有極大助益。
摘要(英) Saving energy is getting important in recent years because of the huge dissipation causing from the regular electric equipments. Reducing the power from the 3G and the vehicle products is the first step. Silicon is the popular material to fabricate semiconductor elements since 1980’s, but it causes much power loss in heat effect and high frequency loss. The rapid development of the RF power electronics requires a wide bandgap material as GaN device due to its high output power density, high operation voltage and low switching loss. The AlGaN/GaN HEMT devices have a lower on-resistance and a higher switching speed due to the high electron mobility and the high electron density of the 2DEG caused by polarization effect. But when the devices are used for high power and high current applications, the heating effect would be produced in the device channel. Recently, the GaN HEMT devices have been grown on Si substrates because it has some advantages about low cost, large area availability, and the acceptable thermal conductivity, the current dispersion effect in this epitaxy structure is therefore not obviously.
This thesis focuses on the high voltage characteristics of AlGaN/GaN HEMT based on silicon and sapphire substrates, and using the devices to design the high efficiency and high power performance circuits. The characteristics of the AlGaN/GaN power devices (Lg=1.5 μm,Wg=1 mm) which were fabricated on the silicon and sapphire substrates are discussed in Chapter 3. Chapter 4 and Chapter 5 present the circuit applications of the DC-DC converters and the 2.4 GHz power amplifiers using these power devices. The DC-DC converters demonstrate a performance of 10 V-to-20 V voltage conversion which can achieve the high efficiency and high output power for supplying the vehicle electronics applications. The GaN power amplifiers designed for 2.4 GHz wireless transmissions are also presented with high efficiency performance to reduce power requirements and simplifies cooling system.
關鍵字(中) ★ 功率放大器
★ 直流升壓轉換器
★ 氮化鎵
關鍵字(英) ★ Power Amplifier
★ DC-to-DC converter
★ GaN
論文目次 摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 VII
表目錄 X
第一章 緒論 1
1.1 研究動機 1
1.2 AlGaN/GaN功率元件之應用 3
1.2.1 直流對直流升壓轉換器 3
1.2.2 高頻功率放大器 4
1.3 論文架構 5
第二章 氮化鋁鎵/氮化鎵高電子移導率電晶體製作 6
2.1 AlGaN/GaN HEMT基板材料簡介 6
2.2 AlGaN/GaN功率元件磊晶結構設計 7
2.2.1 矽基板(Silicon)磊晶結構設計 8
2.2.2 藍寶石基板(Sapphire)磊晶結構設計 9
2.3 AlGaN/GaN HEMT原理簡介 9
2.4 AlGaN/GaN功率元件佈局設計 11
2.5 AlGaN/GaN功率元件製程步驟 13
第三章 氮化鋁鎵/氮化鎵高電子移導率電晶體量測結果比較 22
3.1 簡介 22
3.2 AlGaN/GaN功率元件直流量測分析 22
3.3 Thermal IR 熱效應分析 26
3.4 PULSED IV量測系統 28
3.4.1 PULSED IV量測架構 28
3.4.2 PULSED IV量測結果比較 31
3.5 AlGaN/GaN功率元件高頻量測分析 34
3.6 本章總結 37
第四章 氮化鋁鎵/氮化鎵高電子移導率電晶體應用於直流對直流升壓轉換器 38
4.1 簡介 38
4.2 直流對直流升壓轉換器原理及操作 39
4.2.1 輸入輸出特性 39
4.2.2 被動元件理論分析 42
4.3 直流對直流升壓轉換器量測結果分析 45
4.3.1 電路設計與元件選擇 45
4.3.2 電路與量測系統架構 47
4.3.3 直流對直流升壓轉換器量測結果分析 48
4.4 直流對直流升壓轉換器損耗分析 52
4.5 本章總結 55
第五章 氮化鋁鎵/氮化鎵高電子移導率電晶體應用於2.4 GHz功率放大器 56
5.1 簡介 56
5.2 功率放大器設計原理 57
5.2.1 功率放大器設計規格 57
5.2.2 功率放大器阻抗匹配 58
5.3 AlGaN/GaN HEMT功率放大器設計 60
5.3.1 LOAD PULL功率量測結果比較 60
5.3.2 功率放大器模擬結果 62
5.3.3 功率放大器量測結果 63
5.4 威爾京生功率放大器設計與量測分析 67
5.4.1 威爾京生功率放大器簡介 67
5.4.2 威爾京生功率放大器設計及實作 68
5.5 直流對直流升壓轉換器整合2.4 GHz功率放大器 71
5.6 本章總結 75
第六章 結論 76
參考文獻 78
參考文獻 [1] B.J. Baliga, "Trends in power semiconductor devices," IEEE Transactions on Electron Devices, vol. 43, pp. 1717-1731,(1996).
[2] J.J. Wierer, D.A. Steigerwald, M.R. Krames, J.J. O'Shea,” High-power AlGaInN flip-chip light-emitting diodes”, Appl. Phys. Lett, vol. 78, pp. 3379 ,(2001).
[3] S.H. Baek, J.O. Kim, M.K. Kwon, I.K. Park, S.I. Na, J.Y. Kim,” Enhanced Carrier Confinement in AlInGaN–InGaN Quantum Wells in Near Ultraviolet Light-Emitting Diodes”,IEEE Photonics Technology Letters, vol.18, pp.11 (2006).
[4] T. Nishida,H. Saito,N Kobayashi,” Efficient and high-power AlGaN-based ultraviolet light-emitting diode grown on bulk GaN”, Appl. Phys. Lett, vol. 79,pp.711 ,(2001).
[5] N. Zhang,” High voltage GaN HEMTs with low on-resistance for switching applications”, Doctor of Philosophy in Electrical and Computer Engineering ,(2002).
[6] U.K. Mishra, L.S. Thomas, E. Kazior, and Y.F. Wu,” GaN-Based RF Power Devices and Amplifiers”, IEEE vol.96, pp. 2 ,(2008).
[7] O. Ambacher,” Growth and applications of group Ⅲ-nitrides”, Journal of Physics Vol.31, pp.2653-710 ,(1998).
[8] R.J. Campbell, K. Rajashekara,”Evaluation of Power Devices for Automotive Hybrid and 42V Based Systems”, 2004 SAE World Congress Detroit,Michigan March 8-11 ,(2004).
[9] M. Ishico,”Recent R&D Activities of Power Devices for Hybrid Electric Vehicles”,R&D Review of Toyota CRDL vol.39 pp.4 ,(2004).
[10]王雅萱,”異質接面雙極性電晶體VBIC模型建立及其在射頻電路之應用,”碩士論文,國立中央大學 ,(2003).
[11] H. Sano, N. Ui , S.S. Eudyna, K.Cho, S.Ku, Yokohama, Kanagawa,” A 40W GaN HEMT Doherty Power Amplifier with 48% Efficiency for WiMAX Applications”, pp.244-0845 ,(2007).
[12] T.Yamamoto, “High-Linearity 60W Doherty Amplifier for 1.8GHz W-CDMA”, IEEE MTT Microwave Symposium Digest, pp.1352-1355 ,(2006).
[13] I. Takenaka, K. Ishikura, H Takahashi, KHasegawa, "A
330WDistortion-Cancelled Doherty 28V GaAs HJFET Amplifier with 42% Efficiency for W-CDMA Base Stations", 2006 IEEE MTT-S Microwave Symposium Digest, pp.1344-1347 ,(2006).
[14] U.K. Mishra , P. Parikh, Y.F. Wu,” AlGaN/GaN HEMTs: An overview of device operation and applications” Electrical & Computer Engineering Department,
Engineering I, University of California, Santa Barbara .
[15] R. Gaska, A. Osinsky, J. W. Yang, and M. S. Shur,” Self-Heating in High-Power AlGaN-GaN HFET’s”, IEEE Electron Device Letters, vol.19, pp. 3, (1998).
[16] J.W. Johnson, J. Gao, K. Lucht, J. Williamson, “Material, Process, and Device Development of GaN-based HFETs on Silicon Substrates”, Nitronex Corporation, NC 27606.
[17] R. Behtash, H. Tobler, M. Neuburger, A. Schurr, H. Leier,Y. Cordier, E Semond,F. Natali and J. Massies,” AIGaN/GaN HEMTs on Si(ll1) with6.6 W/mm output power density”, Electronics Letters, (2003)
[18] J.W. Johnson, E.L. Piner, A.Vescan, R. Therrien, P. Rajagopal,” 12 W/mm AlGaN/GaN HFETs on Silicon Substrates,”IEEE Electronics Letters, vol.25, pp. 7 ,(2004).
[19] L. Liu, J.H. Edgar,” Substrates for gallium nitride epitaxy”, Materials Science and Engineering, pp.61–127,(2002).
[20] M. Sakai, T. Egawa1, H. Ishikawa, and T. Jimbo,” Reduction of the bowing in MOVPE AlGaN/GaN HEMT structures by using an interlayer insertion method”,Physica Status Solid, vol.7, pp.2412–2415 (2003) .
[21] E.T.Yu and M.O.Manasreh,”Ⅲ-Ⅴ Nitride Semiconductors: Applications & Devices”, Taylor & Fransic,(2002)
[22] J. Bernat, P. Javorka, A. Fox, M. Marso, ”Influence of Layer Structure on Performance of AlGaN/GaN High Electron Mobility Transistors before and after Passivation”, Journal of Electronic Materials, vol. 33, pp. 5, (2004).
[23] 王文凱,”深次微米氮化鎵高電子移率電晶體之製作與應用”,中央大學電機所博士班論文,(2006).
[24] O. Ambacher,B. Foutz, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu,” Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures”, Journal of Applied Physics,vol.85, pp. 3222 (2000).
[25] F. Sacconi, A.D. Carlo, P. Lugli, and Hadis Morkoç,” Spontaneous and Piezoelectric Polarization Effects on the Output Characteristics of AlGaN/GaN Heterojunction Modulation Doped FETs,” IEEE Transactions on Electron Devices, vol. 48, pp. 3, (2001).
[26] Y. Han, S. Xue,T. Wu, Z.Wu, W. Guo, Y. Luo,”Nonselective and smooth etching of GaN/AlGaN heterostructures by Cl2/Ar/BCl3 inductively coupled plasmas”,Journal of Vacuum Science & Technology ,vol. 22, pp. 407-412,(2004).
[27] N Chaturvedi, U Zeimer, J Würfl and G Tränkle,” Mechanism of ohmic contact formation in AlGaN/GaN high electron mobility transistors”, Semicond. Science
Technology, vol.21, pp. 175-179, (2006).
[28] M.E. Lin, Z.Ma, F.Y. Huang, Z. F. Fan, L. H. Allen,” Low resistance ohmic contacts on wide band-gap GaN”, Appl. Phys. Lett, vol.64, pp.21,(1994)
[29] N. Miura, T. Nanjo , M. Suita , T. Oishi , Y. Abe , T. Ozeki , H. Ishikawa, T. Jimbo,” Thermal annealing effects on Ni/Au based Schottky contacts on n-GaN and AlGaN/GaN with insertion of high work function metal”,Solid-State Electronics, vol.48, pp.689–695,(2004).
[30] L. S. Yu, D. J. Qiao, Q. J. Xing, and S. S. Lau,” Ni and Ti Schottky barriers on n-AlGaN grown on SiC substrates”, Applied Physics Letters, vol 73, (1998).
[31] L. Yang ,”New method to measure source and drain resistance of the GaAs MESFET Model”,IEEE Electron Device Lett, vol .7, pp 75-77,(1986).
[32] G. Dambrine, A. Cappy, F. Heliodore, E. Playez,”A New Method for Determining the FET Small-Signal Equivalent Circuit,” IEEE Transactions on Microwave Theory and Techniques, vol.36, pp. 7, (1988).
[33]宋自恆, 林慶仁,”剖析切換式電源供應器的原理及常用元件規格”, 新電子科技雜誌第196 期, (2002).
[34]S. Ajram, R. Kozlowski, H. Fawaz, D.Vandermoere and G, Salmer,”A fully GaAs-based 100MHz, 2W DC-to-DC Power Converter.”Solid-State Device Research Conference, pp. 284-287,(1997).
[35] Y.Chung, S.Cai, W.Lee, Y.Lin, “High power AlGaN/GaN HEMT feedback amplifier module with drain and feedback loop inductances,” Electronic Letters, vol. 37, no. 19,(2001).
[36] K. Krishnamurthy,R.Vetury, S.Keller, U. Mishra, “Broadband GaAs MESFET and GaN HEMT Resistive Feedback Power Amplifiers,” IEEE Journal of Solid-state Circuits, vol.35, no.9, (2000).
[37] J. Flucke, C. Meliani, F. Schnieder and W.Heinrich,” Improved Design Methodology for a 2 GHz Class-E Hybrid Power Amplifier Using Packaged GaN-HEMTs”, Proceedings of the 37th European Microwave Conference.
[38] Y. Lee and Y. Jeong,” A High-Efficiency Class-E GaN HEMT Power Amplifier for WCDMA Applications”, IEEE Microwave and Wireless Components Letters, vol. 17, no. 8, (2007).
指導教授 詹益仁(Yi-Jen Chan) 審核日期 2008-7-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明