參考文獻 |
[1] O. Ambacher et al., “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures,” J. Appl. Phys. vol. 85, 3222, 1999.
[2] M. A. Khan, J. N. Kuznia, A. R. Bhattarai, and D. T. Olson, “Metal semiconductor field effect transistor based on single crystal GaN,” Appl. Phys. Lett. 62, 1786, 1993.
[3] S. T. Sheppard, K. Doverspike, W. L. Pribble, S. T. Allen, and J. W. Palmour, “High power microwave GaN-AlGaN HEMTs on silicon carbide,” IEEE Electron Device Lett. 20, 161, 1999.
[4] M. A. Khan, A. R. Bhattarai, J. N. Kuznia, and D. T. Olson, “High electron mobility transistor based on a GaN-AlXGa1-XN heterojunction,” Appl. Phys. Lett. 63, 1214, 1993.
[5] Y. F. Wu, D. Kapolnek, J. P. Ibbetson, P. Parikh, B. P. Keller, and U. K. Mishra, “Very-high power density AlGaN-GaN HEMTs,” IEEE Trans. Electron Devices 48, 586, 2001.
[6] J. Han, A. G. Baca, R. J. Shul, C. G. Willison, L. Zhang, F. Ren, A. P. Zhang, G. T. Dang, S. M. Donovan, X. A. Cao, H. Cho, K. B. Jung, C. R. Abernathy, S. J. Pearton, and R. G. Wilson, “Growth and fabrication of GaN/AlGaN heterojunction bipolar transistor,” Appl. Phys. Lett., vol. 74, 2702, 1999.
[7] Kuang-Po Hsueh “Studies of GaN-Based Heterojunction Bipolar Transistors” Paper. Department of Electrical Engineering National Central University ROC.
[8] Seikoh Yoshida and Joe Suzuki, “High-temperature reliability of GaN metal semiconductor field-effect transistor and bipolar junction transistor,” J. Appl. Phys. vol. 85, 7931, 1999.
[9] L. S. McCarthy, P. Kozodoy, M. J. W. Rodwell, S. P. DenBaars and U. K.Mishra, “AlGaN/GaN heterojunction bipolar transistor,” IEEE Electron Device Lett. 20, 277, 1999.
[10] L. S. McCarthy, I. P. Smorchkova, P. Fini, M. J. W. Rodwell, J. Speck, S. P. DenBaars and U. K. Mishra, “Small signal RF performance of AlGaN/GaN heterojunction bipolar transistor,” Electron Lett. 38, 144, 2002.
[11] L. S. McCarthy, I. P. Smorchkova, H. Xing, P. Kozodoy, P. Fini, J. Limb, D. L. Pulfrey, J. S. Speck, M. J. W. Rodwell, S. P. DenBaars and U. K. Mishra, “GaN HBT: Toward an RF Device,” IEEE Trans. Electron Devices 48, 543, 2001.
[12] L. McCarthy, I. Smorchkova, H. Xing, P. Fini, S. Keller, J. Speck, S. P. DenBaars, M. J. W. Rodwell and U. K. Mishra, “Effect of threading dislocations on AlGaN’GaN heterojunction bipolar transistors,” Appl. Phys. Lett. 78, 2235, 2001.
[13] X. A. Cao, G. T. Dang, A. P. Zhang, F. Ren, J. M. Van Hove, J. J. Klaassen, C. J. Polley, A. M. Wowchak, P. P. Chow, D. J. King, C. R. Abernathy, and S. J. Pearton, “High current, common-base GaN/AlGaN heterojunction bipolar transistors,” Electrochemical and Solid-State Lett. 3, 144, 2000.
[14] F. Ren, J. Han, R. Hickman, J. M. Van Hove, P. P. Chow, J. J. Klaassen, J. R. LaRoche, K. B. Jung, H. Cho, X. A. Cao, S. M. Donovan, R. F. Kopf, R. G. Wilson, A. G. Baca, R. J. Shul, L. Zhang, C. G. Willison, C. R. Abernathy, S. J. Pearton, “GaN/AlGaN HBT fabrication,” Solid-State Electron. 44, 239, 2000.
[15] J. J. Huang, M. Hattendorf, M. Feng, D. J. H. Lambert, B. S. Shelton, M. M. Wong, U. Chowdhury, T. G. Zhu, H. K. Kwon, and R. D. Dupuis, “Gradedemitter AlGaN/GaN heterojunction bipolar transistors,” Electron. Lett. 36, 1239, 2000.
[16] B. S. Shellon, J. J. Huang, D. J. H. Lambert, T. G. Zhu, M. M. Wong, C. J. Eiting, H. K. Kwon, M. Feng and R. D. Dupuis, “AlGaN/GaN heterojunction bipolar transistors grown by metal organic chemical vapour deposition,” Electron. Lett. 36, 80, 2000.
[17] J. J. Huang, M. Hattendorf, M. Feng, D. J. H. Lambert, B. S. Shelton, M. M. Wong, U. Chowdhury, T. G. Zhu, H. K. Kwon and R. D. Dupuis, “Temperature dependent common emitter current gain and collector-emitter offset voltage study in AlGaN/GaN heterojunction bipolar transistors,” IEEE Electron Device Lett. 22, 157, 2001.
[18] T. Chung, J. Limb, D. Yoo, J. H. Ryou, W. Lee, S. C. Shen, R. D. Dupuis, B. Chu-Kung, M. Feng, D. M. Keogh and P. M. Asbeck, “Device operation of InGaN heterojunction bipolar transistors with a graded emitter-base design,” Appl. Phys Lett. 88, 183501, 2006.
[19] D. M. Keogh, P. M. Asbeck, T. Chung, J. Limb, D. Yoo, J. H. Ryou, W. Lee, S. C. Shen and R. D. Dupuis, “High current gain InGaN/GaN HBTs with 300 °C operating temperature,” Electron. Lett. 42, 661, 2006.
[20] T. Makimoto, K. Kumakura, and N. Kobayashi, “High current gains obtained by InGaN/GaN double heterojunction bipolar transistors with p-InGaN base,” Appl. Phys Lett. 79, 380, 2001.
[21] T. Makimoto, K. Kumakura, and N. Kobayashi, “High current gain (>2000) of GaN/InGaN double heterojunction bipolar transistors using base regrowth of p-InGaN,” Appl. Phys Lett. 83, 1035, 2003.
[22] K. P. Hsueh, Y. M. Hsin, J. K. Sheu, W. C. Lai, C. J. Tun, C. H. Hsu and B. H. Lin, “Al0.17Ga0.83N/GaN heterojunction bipolar transistors fabricated by double mesa technology,” International Electronic Devices and Materials Symposium (IEDMS), Taiwan, R.O.C., Dec. 7-8, 2006.
[23] 李嗣涔, 管傑雄, 孫台平, 半導體元件物理, 三民書局, 1995.
[24] Ralph E. Williams, Gallium Arsenide Processing Techniques, 學風出版社, 1983.
[25] E. H. Rhodetick and R. H. Willian, Metal-Semiconductor Contact, 2nd ed, Oxford Science Publiscations, 1988.
[26] Donald A. Neamen, Semiconductor Physics and Devices, 3rd ed, McGraw-Hill, 2003.
[27] Dieter K. Schroder, Semiconductor Material and Device Characterization, 2nd ed, Wiley, 1998.
[28] J. S. Foresi and T. D. Moustakas, “Metal contacts to gallium nitride,” Appl. Phys. Lett. 62, 2859, 1993.
[29] S. Nakamura and G. Fosol, The Blue Laser Diode, 1997.
[30] S. Nakamura, N. Iwasa, M. Senoh, and T. Mukai, “Hole Compensation Mechanism of p-GaN Films ,” Jap. J. Appl. Phys, 31, 1258, 1992.
[31] H. Ishikawa, S. Kobayashi, Y. Koide, S. Yamasaki, S. Nagai, J. Umezaki, M. Koike, and M. Murakami, “Effects of surface treatments and metal work functions on electrical properties at p-GaN/metal interfaces,” J. Appl. Phys. 81, 1315, 1997.
[32] F. G. Kalaitzakis, N. T. Pelekanos, P. Prystawko, M. Leszczynski, and G. Konstantinidis, “Low resistance as-deposited Cr/Au contacts on p-type GaN,” Appl. Phys. Lett. 91, 261103, 2007.
[33] T. Mori, T. Kozawa, T. Ohwaki, Y. Taga, S. Nagai, S. Yamasaki, S. Asami, N.Shibata, and M. Koike, “Schottky barriers and contact resistances on p-type GaN,” Appl. Phys. Lett. 69, 3537, 1996.
[34] J. K. Kim, J. L. Lee, J. W. Lee, H. E. Shin, Y. J. Park, and T. Kim, “Low resistance Pd/Au ohmic contacts to p-type GaN using surface treatment,” Appl. Phys.Lett. 73, 2953, 1998.
[35] 陳隆建, 發光二極體之原理與製程, 全華科技, 2006.
[36] T. Mori, T. Kozawa, T. Ohwaki, and Y. Taga, “Schottky barriers and contact resistances on p-type GaN,” Appl. Phys.Lett. 69, 3537, 1996.
[37] C. Y. Hu, J. P. Ao, M. Okada, Y. Ohno, “Annealing with Ni for ohmic contact formation on ICP-etched p-GaN,” Electron Lett. 44, 2, 2008.
[38] Hui-Feng Lin, “AlN layered structure SAW devices -design, simulation and fabrication” Paper. Department of Electronic Engineering Chung Yuan Christian University ROC.
[39] L. S. McCarthy, I. P. Smorchkova, H. Xing, P. Kozodoy, P. Fini, J. Limb, D. L. Pulfrey, J. S. Speck, M. J. W. Rodwell, S. P. DenBaars and U. K. Mishra, “GaN HBT: Toward an RF Device,” IEEE Trans. Electron Devices 48, 543, 2001.
[40] K. P. Hsueh, Y. M. Hsin, J. K. Sheu, W. C. Lai, C. J. Tun, C. H. Hsu, B. H. Lin, “Effects of leakage current and Schottky-like ohmic contact on the characterization of Al0.17Ga0.83N/GaN HBTs,” Solid-State Electronics. 3, 1073, 2007.
[41] J. C. Zolper, S. J. Pearton, R. G. Wilson, and R. A. Stall, “Implant activation and redistribution of dopants in GaN”, IEEE, Ion Implantation Technology, Proceedings of the 11th International Conference, 1997.
[42] J. K. Sheu, C. J. Tun, M. S. Tsai, C. C. Lee, G. C. Chi, S. J. Chang and Y. K. Su, “n+ -GaN formed by Si implantation into p-GaN”, J. Appl. Phys. 91, 1845, 2002.
[43] 江博仁, “矽離子佈植於p 型氮化鎵之特性研究”, 中央大學光電科學研究所, 碩士論文, 2002.
[44] 李明倫, “矽離子佈植在p型氮化鎵的材料分析與元件特性之研究”, 中央大學物理研究所, 碩士論文, 2002. |