博碩士論文 955201053 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:97 、訪客IP:18.225.209.89
姓名 顏伯恩(Bo-en Yan)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 850 nm 矽光檢測器
(850 nm Silicon Photodetectors)
相關論文
★ 電子式基因序列偵測晶片之原型★ 增強型與空乏型砷化鋁鎵/砷化銦鎵假晶格高電子遷移率電晶體: 元件特性、模型與電路應用
★ 使用覆晶技術之微波與毫米波積體電路★ 注入增強型與電場終止型之絕緣閘雙極性電晶體佈局設計與分析
★ 以標準CMOS製程實現之850 nm矽光檢測器★ 600 V新型溝渠式載子儲存絕緣閘雙極性電晶體之設計
★ 具有低摻雜P型緩衝層與穿透型P+射源結構之600V穿透式絕緣閘雙極性電晶體★ 雙閘極金氧半場效電晶體與電路應用
★ 空乏型功率金屬氧化物半導體場效電晶體 設計、模擬與特性分析★ 高頻氮化鋁鎵/氮化鎵高速電子遷移率電晶體佈局設計及特性分析
★ 氮化鎵電晶體 SPICE 模型建立 與反向導通特性分析★ 加強型氮化鎵電晶體之閘極電流與電容研究和長時間測量分析
★ 新型加強型氮化鎵高電子遷移率電晶體之電性探討★ 氮化鎵蕭特基二極體與高電子遷移率電晶體之設計與製作
★ 整合蕭特基p型氮化鎵閘極二極體與加強型p型氮化鎵閘極高電子遷移率電晶體之新型電晶體★ 垂直型氧化鎵蕭特基二極體於氧化鎵基板之製作與特性分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文利用0.35 um CMOS及0.18 um CMOS標準製程實現光檢測器。首先在0.35 um CMOS光檢測器部分,設計目的在於改善矽(silicon) 光檢測器(PD)響應度普遍不高的情形,針對元件佈局的變化設計六邊形及八邊形的光檢測器,藉由佈局的變化能在有限面積下增加響應度。其中以六邊形光檢測器特性最好,響應度在逆偏壓14 V時達到0.12 A/W,可以改善傳統直條狀PD的響應度約1.27倍。
此論文第二部份為0.18 um CMOS光檢測器部分,使用n型、p型井製程及離子佈值製作光檢測器元件,並且加入自行設計的體架構(Body Contact)對CMOS光檢測器頻寬改善。當外加偏壓至體架構時,在光檢測器的下方會形成一電流路徑而有效消除慢速擴散載子,得以增加光檢測器頻寬及速度。而所設計的光檢測器中,將體架構環繞在元件外圍並且在內部交趾分布的結構頻寬表現最好。當體架構偏壓為10 V時,可得到頻寬由1 GHz改善至1.5 GHz。結果顯示:一、加入體架構偏壓時,光檢測器下方的電流後可以掃除慢速擴散載子,因此光檢測器的頻寬得以提升;二、比較不同設計的體架構,對於掃除慢速擴散載子效果會有差異,完整的外圍環讓體架構電流可以形成更完整的橫向電流面,對於元件頻寬提升效果較明顯。
論文最後為利用0.18 um CMOS製程,將光檢測器(PD)、轉阻放大器(Transimpedance)及限制放大器(Limiting Amplifier)整合成前端光接收器,實現差動(Differential)以及單邊(Single-end)電路架構的850 nm光接收器,但轉阻放大器緩衝級偏壓設計考慮未周詳,因此產生了低頻震盪的問題。論文中也有提出解決得方法,差動架構光接收器功率消耗為124 mW,可得轉阻增益ZT約為49 dB、3 dB頻寬為2.2 GHz以及光電轉換頻寬為1.5 GHz的電路。單邊架構光接收器可得轉阻增益ZT約為52 dB、3 dB頻寬為1.4 GHz以及光電轉換頻寬為1 GHz的電路。
摘要(英) This work demonstrates photodiodes (PDs) fabricated by standard silicon process technologies. Two kinds of PDs are proposed. One is in 0.35 um CMOS technology and the other is in 0.18 um CMOS technology.
This first section is the design of a high responsivity PD, and the PD layout is hexgon and ocagon in 0.35 um CMOS technology. The main ideas behind the layout design are to in crease the sidewall depletion region by fractal geometries. We show a good PD responsivity, the measured of the hexagon PD is 0.121 A/W and -3 dB bandwidth 790 MHz.
The second section is the design of a high bandwidth PD in 0.18 um CMOS technology. We remove the slow diffusion carries which are generated from substrate in CMOS PD by using body contact design with supplied voltage to curries into ground and improving PD bandwidth. When Body voltage is 10 V, the PD shows a much higher electrical bandwidth of 1.5 GHz.
In final section, we try to combine the Regulated Cascode Transimpedance amplifier (RGC TIA), Limiting amplifier(LA), and the previous available photodiode in Silicon (Si) CMOS technology to realize a high speed and highly integrated photoreceiver, which is fully compatible in standard Si CMOS process. Using Regulated Cascode Transimpedance amplifier at input can reduce effect of capacitance on PD and PAD. However, the voltage of the buffer stage is not considered carefully, hence the circuit gets a wrong current. The measured -3dB bandwidth of the differential and single-end circuit are about 2.2 GHz, and 1.4 GHz respectively, while their gain are about 49 dB and 52 dB.Implemented in a 0.18 um CMOS technology, the total power dissipation is 124 mW and 50.9 mW. The chip size is 0.6 mm2 and 0.576 mm2.
關鍵字(中) ★ 光檢測器 關鍵字(英) ★ Silicon
★ Photodetectors
論文目次 目錄
圖目錄
表目錄
第一章 導論
1.1 研究動機
1.2 光檢測器介紹
1.3 論文架構
第二章 光纖通訊及矽光檢測器簡介
2.1 簡介
2.2 光纖通訊的發展
2.3 光纖通訊的優勢
2.4 光檢測器工作原理
2.5 利用標準製程製作光檢測器
第三章 0.35 um CMOS製程光檢測器設計
3.1 簡介
3.2 研究近況
3.3 元件架構設計與模擬
3.3.1 元件架構
3.3.2 元件模擬
3.4 量測結果與討論
3.4.1 量測結果
3.4.2 討論
3.5 元件模型萃取
3.6 結論第四章 0.18 um CMOS製程光檢測器設計
4.1 簡介
4.2 研究近況
4.3 元件架構設計與量測
4.3.1 元件架構與模擬
4.3.2 量測結果與討論
4.4 元件架構改善設計與量測
4.4.1 元件架構改善模擬
4.4.2 量測結果與討論
4.4.3 埋藏的深N-Well結構設計
4.5 元件模型萃取
4.6 結論第五章 CMOS光電積體整合電路
5.1 簡介
5.2 研究近況
5.3 差動電路架構
5.4 電路模擬以及量測結果與討論
5.4.1 電路模擬
5.4.2 結果與討論
5.5 單邊電路架構與模擬
5.6 量測結果與討論
5.7 結論
第六章 結論以及未來工作
6.1 結論
6.2 未來工作
參考文獻 [1] Sasa Radovanovic´, Anne-Johan Annema, and Bram Nauta, “A 3-Gb/s Optical Detector in Standard CMOS for 850-nm Optical Communication,” IEEE Journal of Solid-State Circuits, Vol. 40, No.8, 2005.
[2] M. Jutzi, M. Grözing, E. Gaugler, W. Mazioschek, and M. Berroth, “2-Gb/s CMOS Optical Integrated Receiver With a Spatially Modulated Photodetector,” IEEE Photonics Technology Letters, Vol. 17, No. 6, 2005.
[3] B. Yang, J. D. Schaub, S. M. Csutak, D. L. Rogers, and J. C. Campbell, “10-Gb/s All-Silicon Optical Receiver,” IEEE Photonics Technology Letters, Vol. 15, No. 5, 2003.
[4] 劉玉章, “短波長光通訊之矽標準製程光檢測器,” 國立中央大學碩士論文, 2007.
[5] Kasap, S. O., “Optoelectronics and photonics: principles and practices, ” Prentice Hall, 2001.
[6] G. P. Agrawal, “Fiber-Optical Communication Systems, ”John Wiley and Sons, New York, 1997.
[7] Sasa Radovanovic, Anne-Johan Annema, and Bram Nauta, “High-Speed Photodiodes in Standard CMOS technology , ”Springer, 2006.
[8] D. A. B. Miller, “Physical reasons for optical interconnection,” Int. J. Optoelectronics 11, pp.155-168, 1997.
[9] Phillip B. Espinasse, Steven L. Kosier, “What's in store for silicon photoreceivers”, IEEE CIRCUITS & DEVICES MAGAZINE, MARCH 2004.
[10] Donald A. Neamen , “Semiconductor Physics & Devices 3/E”, Mc Graw Hill 1997.
[11] C. Hermans, and M. S. J. Steyaert,“A High-Speed 850-nm Optical Receiver Front-End in 0.18-?m CMOS”, IEEE Journal of Solid-State Circuits, Vol. 41, No. 7, pp. 1606-1614, Jul. 2006.
[12] Sasa Radovanovic, AnneJohan Annema and Bram Nauta, “Physical and electrical bandwidths of integrated photodiodes in standard CMOS technology,” Proc. EDSSC 2003, pp. 95–98.
[13] T. K. Woodward, and Ashok V. Krishnamoorthy, “1-Gb/s Integrated
Optical Detector and Receivers in Commercial CMOS Technologies, ”IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 5, NO. 2, APRIL 1999.
[14] Euhan Chong, and Khoman phang , “A 400Mbps CMOS Spatially -Modulated Photoreceiver for Optical Storage,”Circuits and Systems, 2005. ISCAS 2005. IEEE International Symposium, page(s):1537 - 1540 Vol. 2, May 2005.
[15] W.-Z. Chen, S.-H. Huang, G.-W. Wu, C.-F. Chiu, W.-H. Chang and Y.-Z. Juang, “A 3.125 Gbps CMOS Fully Integrated Optical Receiver with Adaptive Analog Equalizer,” IEEE Asian Solid-State Circuits Conference, Korea 2007.
[16] Wei-Kuo Huang, and Yue-ming Hsin, “Bandwidth Enhancement in Si Photodiode by Eliminating Slow Diffusion Photocarriers,” Electronic,Letter ,Vol.44 NO.1, January 2008.
[17] Drew Guckenderger, Jeremy D. Schaub, Daniel Kucharski and KevinT. Kornegay, “1V, 10mW, 10Gb/s CMOS Optical Receiver Front-End,” IEEE 2005.
[18] W.-Z. Chen, S.-H. Huang, “A 2.5 Gbps CMOs Fully Integrated Optical Receicer with Lateral PIN Detector,” Custom Integrated Circuits Conference, 2007. CICC '07. IEEE.
[19] Sung Min Park, and Hoi-Jun Yoo, “1.25 Gb/s Regulated Cascode CMOS Transimpedance Amplifier for Gigabit Ethernet Applications,” IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 39, NO. 1, JANUARY 2004.
[20] W.-Z. Chen, Ying_Lien Cheng, and Da-Shin Lin, “A 1.8-V 10-Gb/s Fully Integrated CMOS Optical Receiver Analog Front-End,” IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 40, NO. 6, JUNE 2005.
[21] Huei-Yan Huang, Jun-Chau Chien, and Liang-Hung Lu, “A 10-Gb/s Inductorless CMOS Limiting Amplifier With Third-Order Interleaving Active Feedback,” IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS,VOL. 42, NO. 5, MAY 2007.
[22] Behzad Razavi, “Design of Integrated Circuits for Optical Comminications,” McGraw Hill 2003.
指導教授 辛裕明(Yue-ming Hsin) 審核日期 2008-7-8
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明