參考文獻 |
[1] S. E. Thompson et al., “A 90-nm logic technology featuring strained-silicon,” IEEE Trans. Electron Devices, vol. 51, p. 1790, 2004.
[2] S. Y. Wu et al., “A 32nm CMOS low power SoC platform technology for foundry applications with functional high density SRAM,” in IEDM Tech. Dig. 2007, p. 263.
[3] R. Chau et al., “Silicon nano-transistors for logic applications,” Physica E: Low-dimensional Systems and Nanostructures, vol. 19, p. 1, 2003.
[4] B. Yu et al., “One-dimensional germanium nanowires for future electronics,” J. Clust. Sci., vol. 17, p. 579, 2006.
[5] S. E. Thompson et al., “In search of “forever,” continued transistor scaling one new material at a time,” IEEE Trans. Semicond. Manuf., vol. 18, p. 26, 2005.
[6] B. Yu and M. Meyyappan, “Nanotechnology: role in emerging nanoelectronics,” Solid-State Electron., vol. 50, p. 536, 2006.
[7] M. Heuser et al., “Fabrication of wire-MOSFETs on silicon-on-insulator substrate,” Microelectron. Eng., vol. 61-62, p. 613, 2002.
[8] Y. Cui et al., “High performance silicon nanowire field effect transistors,” Nano Lett., vol. 3, p. 149, 2003.
[9] N. Singh et al., “High-performance fully depleted silicon nanowire (diameter ≦ 5 nm) gate-all-around CMOS devices,” IEEE Electron Device Lett., vol. 27, p. 383, 2006.
[10] K. Saraswat et al., “High performance germanium MOSFETs,” Mater. Sci. Eng., B vol. 26, p. 242, 2006.
[11] T. Krishnamohan et al., “High-mobility low band-to-band-tunneling strained- germanium double-gate heterostructure FETs: simulations,” IEEE Trans. Electron Devices, vol. 53, p. 1000, 2006.
[12] T. Maeda et al., “High mobility Ge-on-insulator p-channel MOSFETs using Pt germanide schottky source/drain,” IEEE Electron Device Lett., vol. 26, p. 102, 2005.
[13] C. O. Chui et al., “Germanium MOS capacitors incorporating ultrathin high-k gate dielectric,” IEEE Electron Device Lett., vol. 23, p. 473, 2002.
[14] Y. Maeda, N. Tsukamoto and Y. Yazawa, “Visible photoluminescence of Ge microcrystals embedded in SiO2 glassy matrices,” Appl. Phys. Lett., vol. 59, p. 3168, 1991.
[15] D. Hisamoto et al., “FinFET—a self-aligned double-gate MOSFET scalable to 20 nm,” IEEE Trans. Electron Devices, vol. 47, p. 2320, 2000.
[16] Y. K. Choi, T. J. King and C. Hu, “Nanoscale CMOS spacer FinFET for the terabit era,” IEEE Electron Device Lett., vol. 23, p. 25, 2002.
[17] X. Sun et al., “Synthesis of germanium nanowires on insulator catalyzed by indium or antimony,” J. Vac. Sci. Technol. B, vol. 25, p. 415, 2007.
[18] Y. Y. Wu and P. D. Yang, “Direct observation of vapor-liquid-solid nanowire growth,” J. Amer. Chem. Soc., vol. 123, p. 3165, 2001.
[19] G. M. Cohen et al., “Nanowire metal-oxide-semiconductor field effect transistor with doped epitaxial contacts for source and drain,” Appl. Phys. Lett., vol. 90, p. 233110, 2007.
[20] L. Zhang, R. Tu and H. Dai, “Parallel core-shell metal-dielectric-semiconductor germanium nanowires for high-current surround-gate field-effect transistors,” Nano Lett., vol. 6, p. 2785, 2006.
[21] W. M. Weber et al., “Silicon-nanowire transistors with intruded nickel-silicide contacts,” Nano Lett., vol. 6, p. 2660, 2006.
[22] H. K. Liou et al., “Effect of Ge concentration on SiGe oxidation behavior,” Appl. Phys. Lett., vol. 59, p. 1200, 1991.
[23] P. W. Li et al., “Study of tunneling currents through germanium quantum-dot single-hole and -electron transistors,” Appl. Phys. Lett., vol. 88, p. 213117, 2006.
[24] W. T. Lai and P. W. Li, “Growth kinetics and related physical/electrical properties of Ge quantum dots formed by thermal oxidation of Si1-xGex-on-insulator,” Nanotechnol., vol. 18, p. 145402, 2007.
[25] P. W. Li et al., “Fabrication of a germanium quantum-dot single-electron transistor with large coulomb-blockade oscillations at room-temperature,” Appl. Phys. Lett., vol. 85, p. 1532, 2004.
[26] G. L. Chen et al., “Tunneling spectroscopy of a germanium quantum dot in single-hole transistors with self-aligned electrodes,” Nanotechnol., vol. 18, p. 475402, 2007.
[27] S. Cristoloveanu, “Introduction to silicon on insulator materials and devices,” Microelectron. Eng., vol. 39, p. 145, 1997.
[28] H. C. Casey, Jr., Devices for integrated circuits silicon and III-V compound semiconductors, John Wiley New York, 1999.
[29] S. M. Sze, Semiconductor devices, physics and technology, 2nd ed., John Wiley New York, 2001.
[30] J. P. Colinge et al., “Temperature effects on trigate SOI MOSFETs,” IEEE Electron Device Lett., vol. 27, p. 172, 2006.
[31] S. C. Rustagi et al., “Low-temperature transport characteristics and quantum- confinement effects in gate-all-around Si-nanowire N-MOSFET,” IEEE Electron Device Lett., vol. 28, p. 909, 2007.
[32] J. Kedzierski et al., “Extension and source/drain design for high-performance FinFET devices,” IEEE Trans. Electron Devices, vol. 50, p. 952, 2003.
|