博碩士論文 955201059 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:73 、訪客IP:18.190.160.235
姓名 黃茂順(Mao-shun Huang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 溝槽式鍺奈米晶粒快閃記憶體單胞元的製作
(Fabrication of Ge Nanocrystal Flash Memory Cells with Trench Structure)
相關論文
★ 金屬-半導體-金屬光偵測器的特性★ 非晶質氮化矽氫基薄膜發光二極體與有機發光二極體的光電特性
★ 具非晶質n-i-p-n層之氧化多孔矽發光二極體的光電特性★ 低漏電流與高崩潰電壓大面積矽偵測器製程之研究
★ 具自行對準凹陷電極1x4矽質金屬-半導體-金屬光偵測器陣列的特性★ 非晶矽射極異質雙載子電晶體與有機發光二極體的特性
★ 吸光區累崩區分離的累崩光二極體★ 蕭特基源/汲極接觸的反堆疊型非晶質矽化鍺薄膜電晶體
★ 矽晶圓上具有隔離氧化層非晶質薄膜發光二極體之光電特性★ 具非晶異質接面及溝渠式電極之矽質金屬-半導體-金屬光偵測器的暗電流特性
★ 非晶矽/晶質矽異質接面矽基金屬-半導體-金屬光檢測器與具非晶質無機電子/電洞注入層高分子發光二極體之研究★ 具非晶質矽合金類量子井極薄障層之高靈敏度平面矽基金屬–半導體–金屬光檢測器
★ 具蕭特基源/汲極的上閘極型非晶矽鍺與 多晶矽薄膜電晶體★ 大面積矽偵測器的製程改良與元件設計
★ 具組成梯度能隙非晶質矽合金電子注入層與電洞緩衝層的高分子發光二極體★ 非晶質吸光區與累增區分離之類超晶格累崩光二極體
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 論文提要
本論文的主題是研製具有溝槽式結構的鍺奈米晶粒快閃記憶體單胞元。首先利用TMAH溶液對(100)晶向的矽晶圓進行蝕刻,形成凹陷的溝槽結構,然後藉由乾式氧化成長氧化層在矽基板上,之後以電漿助長化學氣相沉積系統沉積非晶矽/非晶矽鍺/非晶矽多層膜,再以高溫爐管進行氧化處理,形成鍺奈米晶體包埋在氧化層內;鍺奈米晶體的形成是利用矽鍺合金中的矽與鍺在高溫氧化速率不同,鍺原子會自氧化物釋放出來並埋藏在氧化物與矽鍺合金介面的特性,利用此技巧可製造奈米尺寸的鍺奈米晶體。本研究引用此技巧將鍺奈米晶體成長在溝槽側壁,利用製程自然地將儲存媒介分立,以期能得到多位元的快閃記憶體單胞元。
為探討單胞元的電荷儲存特性,研究時亦首先製作金屬-氧化層-半導體電容結構,藉由電容-電壓量測得知元件的記憶窗口大小約為0.25伏特。接著藉由電流-電壓量測雙位元記憶體單胞元的IDS-VGS特性曲線圖,發現臨界電壓有偏移的效果,記憶窗口大小最大約為12.5伏特。希冀以此具有溝槽結構的鍺奈米晶體快閃記憶體單胞元可應用在未來的記體體工業中。
摘要(英) Abstract
In this thesis, the Ge nanocrystal flash memory cells with trench structure have been fabricated and demonstrated. Firstly, the trench structure was formed by etching of (100) silicon wafer with TMAH solution. Then, oxide was grown on the Si substrate with a dry oxidation process. After that, the amorphous silicon (a-Si)/amorphous silicon germanium (a-SiGe)/a-Si multilayer were prepared with a plasma- enhanced chemical vapor deposition system. Finally, the a-Si/a-SiGe/a-Si multilayers were thermally oxidized by using a high-temperature furnace to form the Ge nanocrystals. The nano-meter scale Ge crystal dots were formed by Ge segregation and agglomeration during the SiGe oxidation process. It was expected that the multi-bit operation of flash memory cells could be obtained by the charge storage medium of Ge nanocrystals formed on the sidewalls of trench accordingly.
In order to investigate the charge storage phenomenon of the formed Ge nanocrystals, the metal-oxide-semiconductor (MOS) capacitors with Ge nanocrystal embedded in oxide matrix were also fabricated. It has been found that a memory window of 0.25 V could be obtained, from the C-V measurements of the MOS capacitors. From the measured IDS-VGS curves of two-bits memory cells, a wide memory window of about 12.5 V was obtained. The Ge-nanocrystals flash-memory cells with trench structure could be a promising candidate in future flash memory application.
關鍵字(中) ★ 鍺量子點
★ 快閃記憶體
關鍵字(英) ★ flash memory
★ Ge nanocrystal
論文目次 Contents
Table Captions………………………………………………… ..Ⅲ
Figure Captions………………………………………..……… ..Ⅳ
Chapter 1 Introduction…...…………………………………...1
Chapter 2 Motivation and Device Operation rinciples…...4
2.1 Motivation…………………………………......4
2.1.1 Quantum confinement effect [3]………....4
2.1.2 Comparison between Ge and Si quantum
dots…..................................6
2.1.3 Formation of Ge quantum-dots…………....6
2.1.4 Effects of Ge concentration……………...8
2.2 Operation principles of nonvolatile
memory…..................................12
2.2.1 Basic program mechanisms………………...12
2.2.2 Basic erasing mechanisms………………...13
Chapter 3 Device Fabrication and Measurement
Techniques….................................18
3.1 Device Fabrication…………………………....18
3.2 MeasurementTechniques…….................31
3.2.1 Transmission electron microscopy (TEM).31
3.2.2 Scanning electron microscopy (SEM)…….31
3.2.3 Micro-Raman spectroscopy………………….31
3.2.4 Capacitance-Voltage meter…………………32
Chapter 4 Experimental Results and Discussion……………33
4.1 The formation of groove structure………….33
4.2 The Characterization of Ge nanocrystals….37
4.2.1 Scanning electron microscopy (SEM)…….37
4.2.2 Raman scattering spectra………………….43
4.2.3 Transmission electron microscopy (TEM).45
4.3 C-V measurements of MOS capacitors…………46
4.4 I-V measurements of two-bits cell………….54
4.5 Operation of two-bits………………………….63
Chapter 5 Conclusion…………………………………………….71
References………………………………………………………….73
參考文獻 References
[1] J. De Blauwe, “Nanocrystal Nonvolatile Memory Devices,” IEEE Trans. Nanotechnol., vol. 1, No. 1, pp. 72-77, 2002.
[2] C. H. Tu, T. C. Chang, P. T. Liu, H. C. Liu, S. M. Sze, and C. Y. Chang, “Improved Memory Window for Ge Nanocrystals Embedded in SiON Layer,” Appl. Phys. Lett., vol. 89, 162105, 2006.
[3] J. Singh, “Electronic and Optoelectronic Properties of Semiconductor Structures,” chap. 3, pp. 125-127, 2003.
[4] Y. Maeda, “Visible Photoluminescence from Nanocrystallite Ge Embedded in A Glassy SiO2 Matrix: Evidence in Support of the Quantum Confinement Mechanism,” Phys. Rev. B vol. 51, pp. 1658, 1995.
[5] K. V. Shcheglov, C. M. Yang, K. J. Vahala, and Harry A. Atwater “Electroluminescence and Photoluminescence of Ge-implanted Si/SiO2/Si structures,” Appl. Phys. Lett., vol. 66, pp. 745-747, 1995.
[6] J. Y. Zhang, Y. H. Yea and X. L. Tan, “Electroluminescence and Carrier Transport of SiO2 Film Containing Different Density of Ge Nanocrystals,” Appl. Phys. Lett., vol. 74, pp. 2459-2461, 1999.
[7] W. K. Choi, Y. W. Ho, S. P. Ng, and V. Ng, “Microstructural and Photoluminescence Studies of Germanium Nanocrystals in a Amorphous Silicon Oxide Films,” J. Appl. Phys., vol. 89, pp.2168-2172, 2001.
[8] Z. He, J. Xu, W. Li, K. Chen, and D. Feng, “Crystallization and Oxidation Process of nc-Ge in a- SiO2 Matrix from a-Si:H/a-Ge:H Multilayers,” J. of Non-Crystalline Solids, vol. 266-269, pp. 1025-1028, 2000.
[9] P. E. Hellberg, S. L. Zhang, F. M. d’Heurle, and C. S. Petersson, “Oxidation of Silicon-germanium Alloys. I. An experimental study,” J. Appl. Phys., vol. 82, pp. 5773-5778, 1997.
[10] P. W. Li, W. M. Liao, S. W. Lin, P. S. Chen, S. C. Liu and M. J. Tsai, “Formation of Atomic-scale Germanium Quantum Dots by Selective Oxidation of SiGe/Si-on-insulator,” Appl. Phys. Lett., vol. 83, pp. 4628-4630, 2003.
[11] W. K. Choi, V. Ng, S. P. Ng, and H. H. Thio, “Raman Characterization of Germanium Nanocrystals in Amorphous Silicon Oxide Films Synthesized by Rapid Thermal Annealing,” J. Appl. Phys., vol. 86, pp. 1398-1403, 1999.
[12] P. J. Wu, “Ge Quantum-Dots Formed by Selective Oxidation of a-Si:H/a-SiGe:H Multilayer and Fabrication of Ge Quantum-Dots MSM Photodetectors,” M. S. Thesis, NCU, Taiwan, R.O.C., 2006.
[13] H. K. Liou, P. Mei, U. Gennser, and E. S. Yang, “Effects of Ge Concentration on SiGe Oxidation Behavior,” Appl. Phys. Lett., vol.59, pp. 1200-1202, 1991.
[14] M.Lenzlinger, “Fowler-Nordheim Tunneling in Thermal Grown SiO2,” J. App. Phys., vol. 40, p.278, 1969.
[15] Y. W. Huang, “Nanocrystalline Si P-I-N Solar Cell,” M. S. Thesis, NCU, Taiwan, R.O.C., 2007.
[16] O. Tabata, “Anisotropic Etching of Si in TMAH Solutions,” Sensor and Actuators A, vol. 34, p. 51, 1992.
[17] T. Hiramoto, “Nano-scale Silicon MOSFET: Towards Non-Traditional and Quantum Devices,” 2001 IEEE International SOI Conference, p. 8, 2001.
[18] Min-Chuan Wang, “Study on Ge Quantum Dots Application for Memory and Optoelectronic Devices,” M. S. Thesis, NSYU, Taiwan, R.O.C., 2003.μm
指導教授 洪志旺(Jyh-Wong Hong) 審核日期 2008-7-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明