博碩士論文 955201064 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:20 、訪客IP:3.145.14.29
姓名 陳建成(Chien-Cheng Chen)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 高速, 低耗能, 單模態 850nm波段面射型雷射在光連結上應用
(High-Speed, Low-Power-Consumption, and Single-Mode 850nmVertical-Cavity Surface-Emitting Lasersfor The Application of Optical Interconnect)
相關論文
★ 氮化鎵串接式綠光發光二極體在超高溫(200 ℃)操作的高速表現之和其內部之載子動力學★ 32Gbit/s 低耗能 850nm InAlGaAs 應變量子井面射型雷射
★ 具有大面積且在高靈敏度、低暗電流操作下具有頻寬增強效應的10 Gbit/sec平面式 InAlAs 累增崩潰光二極體★ 應用串接式技術達到超高飽和電流-頻寬乘積(7500mA-GHz,75mA,100GHz)的近彈道傳輸光偵測器
★ 利用鋅擴散方式在半絕緣(GaAs)基板上製作可室溫操作、高速且低漏電流的InAs光檢測器★ 應用超寬頻光子傳送混波器達到遠距分佈及調變的20Gbit/s無誤碼無線振幅偏移調變資料傳輸於W-頻帶
★ 具有同時高速資料傳輸及產生直流電功率的 砷化鎵/磷化銦鎵的雷射功率轉換器★ 超高速(>1Gb/s)可見光發光二極體應用於塑膠光纖通訊及內部載子動力學的研究
★ 具有超低耗能,傳輸資料量比值在850nm波段超高速(40 Gb/s)面射型雷射★ 超高速(~300GHz)光偵測器的製造與其在毫米波生物晶片上的應用
★ 超高速覆晶式(>300GHz)高功率(~mW)光偵測器製作與量測★ 具有單空間模態,低發散角,高功率的鋅擴散二維850nm面射型雷射陣列
★ 應用於850到1550 nm波長光連結且 具有高速,高效率和大面積的p-i-n光偵測器★ 應用於中距離(2km)至短距離光連結知單模態、高速、高輸出光功率的850nm波段面射型雷射
★ 應用在光連接具有高可靠度高速(>25Gbit/sec) 850光波段的垂直共振腔雷射★ 具有高可靠度/高功率輸出與直流到次兆赫茲 (≧300GHz)操作頻寬的超高速光偵測器和其覆晶式封裝設計與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 我們製作一個高效能鋅擴散850nm波段的單模態面射型雷射。其元件擁有較低的臨限電流0.5mA、較高的微分量子效率(80%)及電流調制效率為8.2 GHz/mA1/2,從低的臨限電流至高的飽和電流下元件皆維持穩定的單模態操作,而最大的輸出光功率達到7.3mW。其元件在一個小的操作電流(1.8mA)及較小信號偏壓(0.5Vp-p)就可以使10 Gb/s的眼圖打開及其元件的傳輸量比功率消耗率為6.5 Gps/mW。
然而此高功率單模面射型雷射依然存在空間電洞不足問題,此效應使元件之頻寬在低頻時即有滑落之現象;欲改善此問題,我們製作了三種具有不同鋅擴散深度的元件,進而比較其直流及高頻特性,實驗後發現擴散深度介於中間之元件,可以改善先前所提及之低頻滑落現象,而其激發之光點可在空間中保持單模態操作,與多模態操作之元件相比有一個較好的對準誤差,因此此元件在具有多模態雷射之高頻特性下,亦同時擁有單模態雷射之高對準誤差,同時藉由通過10 Gb/s的眼圖,更證明此最佳化元件可達到高速、低消耗功率的目標。
摘要(英) We demonstrate a high-performance Zn-diffusion single-mode 850nm vertical-cavity surface-emitting laser, which has a low threshold current (0.5 mA), high differential efficiency(80%), high modulation current efficiency (8.2 GHz/mA1/2), and can sustain the single fundamental-mode output with a maximum output power of 7.3 mW under the full range of bias currents. With this device we can achieve 10 Gb/s eye-opening at a low bias current (1.8 mA) and a peak-to-peak driving-voltage of 0.5 V, which corresponds to a very high data-rate/power-dissipation ratio of 6.5 Gps/mW.
However, this device still suffers form the low-frequency roll-off caused by the spatial hole burning (SHB) effect, and degrades the speed performance. In order to solve the mentioned problem, we fabricated the devices with three different depth of Zn-diffusion to compare their DC and RF characteristics. According to our experiment results, we can find that minimization of low-frequency roll-off has been observed in the device with middle depth of Zn-diffusion, and the lasing spot can still maintain spatial single-mode which the alignment tolerance is larger then the multimode device. Therefore, the demonstrated device can have high speed performance of multimode device and the large alignment tolerance of single mode device at the same time. In light of the clearly opened eye-pattern at 10 Gb/s operating speed, we can further evidence that our device can achieve high-speed, low power-dissipation performance.
關鍵字(中) ★ 面射型雷射
★ 高速
★ 半導體雷射
關鍵字(英) ★ High speed
★ VCSEL
★ semiconductor laser
論文目次 摘 要.....................................................i
Abstract.................................................ii
致謝....................................................iii
目 錄.....................................................v
圖目錄..................................................vii
表目錄...................................................xi
第一章 序 論..............................................1
1-1 簡介.........................................1
1-2 面射型雷射(VCSEL)簡介......................3
1-3 高速單模態面射型雷射製作.....................4
第二章 理 論..............................................7
2-1 VCSEL的磊晶結構..............................7
2-2 鋅擴散於DBR..................................9
2-3 VCSEL的選擇性水氧化理論.....................11
2-4 發散角......................................13
第三章 理 論.............................................16
3-1 鋅擴散製程..................................16
3-2 水氣氧化....................................18
3-3 製作電極以及金屬回火(Annealing).............19
3-4平坦化及製作金屬接線.........................22
第四章 量測結果與討論....................................24
4.1量測系統.....................................24
4.1.1. 電流對電壓(I-V)的量測系統................24
4.1.2. 光功率對電流(L-I)之量測系統..............24
4.1.3. 遠場(Far field)之量測系統................25
4.1.4. 近場(Near field)投影之量測系統...........25
4.1.5. 頻譜(Spectrum) 之量測系統................26
4.1.6. 頻寬(Bandwidth)之量測系統................26
4.1.7. 眼圖(Eye pattern)之量測系統..............27
4.2 單模態型VCSEL量測結果.......................28
4.2.1. 電流對電壓(I-V)曲線....................28
4.2.2. 輸出光功率對電流(L-I)曲線..............28
4.2.3 近場(Near field)投影....................30
4.2.4 遠場(Far field)發散角...................30
4.2.5 光頻譜(Optical spectra)圖.................31
4.2.6. 頻寬(Bandwidth) 和D係數(D-factor)......32
4.2.7. S11、S21參數模擬.........................35
4.2.8. K參數(K parameter).......................37
4.2.9. 眼圖(eye pattern)量測....................39
4.3 VCSEL最佳化擴散深度分析.....................40
4.3.1. VCSEL元件結構圖..........................40
4.3.2. 電流對電壓曲線和光功率對電流曲線.........41
4.3.3. 近場投影和光頻譜圖.......................43
4.3.4. 遠場(Far field)發散角....................46
4.3.5. 調準限度(Alignment tolerance)...........48
4.3.6. 頻寬(Bandwidth)..........................49
4.3.7. D係數(D-factor)K參數(K-parameter)......51
4.3.8. 眼圖(eye pattern)比較..................52
第五章 結論與未來研究....................................54
參考資料.................................................56
參考文獻 參考資料
[1]Hiromi Otoma, Akemi Murakami, Yasuaki Kuwata, Nobuaki Ueki, Naotaka Mukoyama, Takashi Kondo, Akira Sakamoto, Seiya Omori, Hideo Nakayama, Takeshi Nakamura, “Single-Mode Oxide-Confined VCSEL for Printers and Sensors,” in Proc. Electronics System Integration Technology Conf., vol. 1, pp. 80-85, Sep. 2006.
[2]NEIL SAVAGE, “Linking with Light,” IEEE Spectrum, vol. 39, issue 8, Aug. 2002.
[3]Katsutoshi Takahashi, Hideyuki Nasu, Yoshinobu Nekado, Masayuki Iwase, Yoshikazu Ikegami, “1.1μm single mode VCSEL-base 4-channel x 10-Gbit/s parallel-optical module,” in Proc. OFC 2008, San Diego, CA, Feb. 2008, pp. OThS1.
[4]Shigeru Nakagawa, Daniel Kuchta, Clint Schow, Richard John, Larry A. Coldren, Yu-Chia Chang, “1.5mW/Gbps Low Power Optical Interconnect Transmitter Exploiting High-Efficiency VCSEL and CMOS Driver,” in Proc. OFC 2008, San Diego, CA, Feb. 2008, pp. OThS3.
[5]F.E. Doany, C.L. Schow, R.Budd, C. Baks, D.M. Kuchta, P. Pepeljugoski, J.A. Kash, F.Libsch, “Chip-to-chip board-level optical data buses,” in Proc. OFC 2008, San Diego, CA, Feb. 2008, pp. OThS4.
[6]C.L. Schow, F.E. Doany, C. Tsang, N. Ruiz, D. Kuchta, C. Patel, J. Knickerbocker, J. Kash, “300-Gb/s 24-Channel Full-Duplex 850-nm CMOS-Based Optical Transceivers,” in Proc. OFC 2008, San Diego, CA, Feb. 2008, pp. OMK5.
[7]KIRCHERER M., JAGER R., KING R., “Single- and multi-mode VCSELs for 12.5 Gb/s data links,” Lasers and Electro-Optics Europe, 2000 Conf. Dig., Nice, France, Paper CTuG2.
[8] R. Tao, M. Berroth, Zhi Gong Wang, “Low power 10 Gbit/s VCSEL driver for optical interconnect,” Electron. Lett., vol. 39, no. 24, Nov. 2003.
[9]H. Soda, K. Iga, C. Kitahara, and Y. Suematsu, “GaInAsP/InP surface emitting injection lasers,” Jpn. J. Appl. Phys., vol. 18, pp. 2329-2330, 1979.
[10] K. Iga, S. Ishikawa, S. Ohkouchi, T. Nishimura, “Room-temperature pulsed oscillation of GaAlAs/GaAs surface-emitting injection laser,” Appl. Phys. Lett., vol. 45, pp. 348-350, 1984.
[11] K. L. Lear and A. N. Al-Omari, “Progress and issues for high speed vertical cavity surface emitting lasers,” Proc. SPIE, vol. 6484, pp. 64840J-1-64840J-12, 2007.
[12] R. S. Geel, S. W. Corzine, J. W. Scott, D. B. Young, and L. A. Coldren, “Low threshold planarized Vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett., vol. 2, pp. 234, 1990.
[13] Å. Haglund, J. S. Gustavsson, J. Vukuˇsic´, P. Modh, Member, IEEE, and A. Larsson, Member, IEEE, “Single Fundamental-Mode Output Power Exceeding 6mW From VCSELs With a Shallow Surface Relief,” IEEE Photon. Technol. Lett., vol. 16, no. 2, Feb. 2004.
[14] Å. Haglund, J. S. Gustavsson, P. Modh, Member, IEEE, and A. Larsson, Member IEEE,” Dynamic Mode Stability Analysis of Surface Relief VCSELs Under Strong RF Modulation,” IEEE Photon. Technol. Lett., vol. 17, no. 8, Aug. 2005.
[15] Akio Furukawa, Satoshi Sasaki, Mitsunari Hoshi, Atsushi Matsuzono, Kosuke Moritoh , Toshihiko Baba,” High-power single-mode vertical-cavity surface-emitting lasers with triangular holey structure,” Appl. Phys. Lett., vol. 85, no. 22, Nov. 2004.
[16] E. W. Young, K. D. Choquette, S. L. Chuang, K. M. Geib, A. J. Fischer, and A. A. Allerman, “Single-transverse-mode vertical-cavity lasers under continuous and pulsed operation,” IEEE Photon. Technol. Lett., vol. 13, pp. 927-929, Sep. 2001.
[17] K. Tai, G. Hasnain. D. Wynn, R. J. Fischer and Y. H. Wang, “90% coupling of top surface emitting GaAs/AlGaAs quantum well laser output into 8μm diameter core silica fiber,” Electron. Lett., vol. 26, no. 19, 1990.
[18] Y.J. Yang, T.G. Dziura, S. C. Wang, R. Fernandez, G. Du, and S. Wang, “Low threshold room-temperature operation of a GaAs single quantum well mushroom structure surface emitting lser,” Soc. Photo-opt Instrun. Eng., vol. 1418, pp. 414-421, 1991.
[19] Y.J. Yang, T. G. Dziura, R. Frenandez, S. C. Wang, G. Du, and S. Wang, ”Low threshold operation of a GaAs single quantum wll mushroom structure surface emitting laser,” Appl. Phys. Lett., vol. 58, pp. 1780-1782, 1991.
[20] Nguyen Hong Ky, J. D., Ganiere, M. Gailhanou, B. Blanchard, L. Pavesi, G. Burri, D. Araujo and F. K. Reinhart, “Self-interstitial mechanism for Zn diffusion-induced disordering of GaAs/AlxGa1-xAs (x=0.1-1) multiple-quantum-well structures,” J. Appl. Phys., vol. 73, pp. 3769-3781, 1993.
[21] Van Vechten,” Intermixing of an AlAs-GaAs superlattice by Zn diffusion,” J. Appl. Phys., vol. 55, pp. 607, 1984.
[22] W. D. Laidig, N. Holonyak, Jr., M. D. Camras, K.Hess, J. J. Coleman, P. D. Dapkus, and J. Bardeen, “Disorder of an AlAs-GaAs superlattice by impurity diffusion,“ Appl. Phys. Lett., vol. 38, 776, 1981.
[23] I. Harrison, H. P. Ho, B. Tuck, M. Henini, and O. H. Hughes, “Zn diffusion-induced disorder in AlAs/GaAs superlattice,” Semicond. Sci. Technol., 4, pp. 841-846, 1989.
[24] 陳志誠”穩態單橫模和穩定極化的面射型雷射”國立台灣大學電機工程學系博士論文 (民國90年).
[25] R. G. Hunsperger, “Integrated Optics:Theory and Technology,” Hong Kong, Springer-Verlag, 77, 1992.
[26] S. K. Ageno, R. J. Roedel, N. Mellen, and J. S. Escher, Appl. Phys. Lett., vol. 47, pp. 1193, 1985.
[27] C. J. Chang-Hasnain, M. Orenstein, A. V. Lehmen, L. T.Florez, and J. P. Harbison, “Transverse mode characteristics of vertical-cavity surface-emitting lasers,” Appl. Phys. Lett., vol. 57, pp. 218-220, 1990.
[28] B. E. Deal and A. S. Grove, “General Relationship for the Thermal Oxidation of Silicon,” J. Appl. Phys., vol. 36, pp. 3770, 1965.
[29] M. Ochiai, Appl. Phys. Lett., vol. 68, pp. 1898, 1996 and J. H. Kim , Appl. Phys. Lett., vol. 69, pp. 3357, 1996.
[30] Kent D. Choquette, Member, IEEE, Kent M. Geib, Carol I. H. Ashby, Ray D. Twesten, Olga Blum, Hong Q. Hou, Member, IEEE, David M. Follstaedt, B. Eugene Hammons, Dave Mathes, and Robert Hull, “Advances in Selective Wet Oxidation of AlGaAs Alloys,” IEEE Journal of selected topics in quantum electronics, vol. 3, no. 3, June 1997.
[31] Kent D. Choquette, K. L. Lear, R. P. Schneider, Jr., K. M. Geib, J. J. Figiel, and Robert Hull, “Fabrication and Performance of Selectively Oxidized Vertical-Cavity Lasers,” IEEE Photon. Technol. Lett., 7, 1237, 1995.
[32] N. Hplonyak, Jr., and J. M. Dallesasse, USA Patent no.5, 262, 360, 1993.
[33] K. D. Choquette, K. M. Geib, H. C. Chui, B. E. Hammons, H. Q. Hou, T. J. Drummond, and R. Hull, “Selective oxidation of buried AlGaAs versus AlAs layers,” Appl. Phys. Lett., 69, pp. 1935-1837, 1996.
[34] K. L. Lear, R. P. Schneidner, Jr., K. D.
Choquette, and S. P. Kilcoyne, “Index guiding dependent effects in implant and oxide confined vertical-cavity lasers,” IEEE Photon. Technol. Lett., vol. 8, pp. 740-742, 1996.
[35] D. L. Huffaker, J. Shin, and D. G. Deppe, “Lasing characteristics of low threshold microcavity lasers using half-wave spacer layers and lateral index confinement,” Appl. Phys. Lett., vol. 66, pp. 1723-1725, 1995.
[36] K. D. Choquette, K. L. Lear, R. P. Schneider, Jr.,and K. M. Geib,”Cavity characteristics of selectively oxidized vertical-cavity lasers,” Appl. Phys. Lett., vol. 66, pp. 3413-3415, 1995.
[37] Hermann A. Haus, ”Waves and Fields in Optoelectronics,” 1984.
[38] C. C. Chen, S. J. Liaw, and Y. J. Yang, Member, IEEE, “Stable Single Mode Operation of an 850nm VCSEL with a Higher Order Mode Absorber Formed by Shallow Zn Diffusion,” IEEE Photon. Technol. Lett., 13, pp. 266, 2001.
[39] J.-W. Shi, C.-C. Chen, Y.-S. Wu, S.-H. Guol, Chihping Kuo, and Ying-Jay Yang, “High-Power and High-Speed Zn-Diffusion Single Fundamental-Mode Vertical-Cavity Surface-Emitting Lasers at 850-nm Wavelength,” IEEE Photon. Technol. Lett., vol. 20, no. 13, July 2008.
[40] Weng W. Chow, Kent D. Choquette, Mary H. Crawford, Kevin L. Lear, and G. Ronald Hadley, “Design, Fabrication, and Performance of Infrared and Visible Vertical-Cavity Surface-Emitting Lasers,” IEEE J. Quantum Electron., 33, 1810-1824, 1997.
[41] Å. Haglund, S. J. Gustavsson, J. Vuk˘usic´, P. Jedrasik, and A. Larsson, “High-power fundamental-mode and polarisation stabilised VCSELs using sub-wavelength surface grating,” Electron. Lett., vol. 41, no. 14, pp. 805–807, July 2005.
[42] C. Carlsson, H. Martinsson, R. Schatz, J. Halonen, and A. Larsson, “Analog modulation properties of oxide confined VCSELs at microwave frequencies,” J. Lightw. Technol., vol. 20, no. 9, pp. 1740–1749, Sep. 2002.
[43] T. Tanigawa, T. Onishi, S. Nagai, and T. Ueda, “High-speed 850 nm AlGaAs/GaAs vertical cavity surface emitting laser with low parasitic capacitance fabricated using BCB planarization technique,” in Proc. Conf. Lasers Electro-Opt. (CLEO 2005), pp. 1381–1383, Paper CWI3.
[44] L.A. COLDREN, S.W. CORZINE, “Diode Lasers and Photonic Integrated Circuits,” Wiley, Oct. 1995.
[45] J. S. Gustavsson, A. Haglund, J. Bengtsson, P. Modh, and A. Larsson, “Dynamic behavior of fundamental-mode stabilized VCSELs using shallow surface relief,” IEEE J. Quantum Electron., vol. 40, no. 6, pp. 607–619, Jun. 2004.
[46] C. Carlsson, H. Martinsson, R. Schatz, J. Halonen, and A. Larsson, “Analog modulation properties of oxide confined VCSELs at microwave frequencies,” J. Lightw. Technol., vol. 20, no. 9, pp. 1740–1749, Sep. 2002.
[47] Chao-Kun Lin, Member, IEEE, Ashish Tandon, Kostadin Djordjev, Scott W. Corzine, and Michael R. T. Tan, Member, IEEE, “High-Speed 985 nm Bottom-Emitting VCSEL Arrays for Chip-to-Chip Parallel Optical Interconnects,” IEEE Journal of selected topics in quantum electronics, no. 5, Sep. / Oct. 2007.
[48] Y.-C. Chang, C. S. Wang, and L. A. Coldren, “High-efficiency, high speed VCSELs with 35 Gbit/s error-free operation,” Electron. Lett., vol. 43, no. 19, pp. 1022–1023, Sep. 2007.
[49] Martin Stach, Fernando Rinaldi, Manikandan Chandran, Steffen Lorch, Rainer Michalzik, “Bidirectional Optical Interconnection at Gb/s Data Rates With Monolithically Integrated VCSEL-MSM Transceiver Chips,” IEEE Photon. Technol. Lett., vol. 18, no. 22, Nov. 2006.
[50] M. Stach, F. Rinaldi, M. Chandran, S. Lorch, R. Michalzik, “Monolithically integrated GaAs-based transceiver chips for bidirectional optical data transmission,” Electron. Lett., vol. 42, no. 12, June 2006.
指導教授 許晉瑋(Jin-Wei Shi) 審核日期 2008-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明