博碩士論文 955201065 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:79 、訪客IP:18.218.188.227
姓名 彭朝文(Chao-Wun Peng)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 多層鍺奈米晶體的製作與其在金氧半浮點電容的應用
(Fabrication of Multilayer Ge Nanocrystal and Its Application in Floating-Dot MOS Capacitor)
相關論文
★ 金屬-半導體-金屬光偵測器的特性★ 非晶質氮化矽氫基薄膜發光二極體與有機發光二極體的光電特性
★ 具非晶質n-i-p-n層之氧化多孔矽發光二極體的光電特性★ 低漏電流與高崩潰電壓大面積矽偵測器製程之研究
★ 具自行對準凹陷電極1x4矽質金屬-半導體-金屬光偵測器陣列的特性★ 非晶矽射極異質雙載子電晶體與有機發光二極體的特性
★ 吸光區累崩區分離的累崩光二極體★ 蕭特基源/汲極接觸的反堆疊型非晶質矽化鍺薄膜電晶體
★ 矽晶圓上具有隔離氧化層非晶質薄膜發光二極體之光電特性★ 具非晶異質接面及溝渠式電極之矽質金屬-半導體-金屬光偵測器的暗電流特性
★ 非晶矽/晶質矽異質接面矽基金屬-半導體-金屬光檢測器與具非晶質無機電子/電洞注入層高分子發光二極體之研究★ 具非晶質矽合金類量子井極薄障層之高靈敏度平面矽基金屬–半導體–金屬光檢測器
★ 具蕭特基源/汲極的上閘極型非晶矽鍺與 多晶矽薄膜電晶體★ 大面積矽偵測器的製程改良與元件設計
★ 具組成梯度能隙非晶質矽合金電子注入層與電洞緩衝層的高分子發光二極體★ 非晶質吸光區與累增區分離之類超晶格累崩光二極體
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 論文摘要
高溫氧化矽鍺合金或退火矽鍺氧合金時,矽會被優先氧化而鍺原子會自氧化物中釋放出來並埋藏在氧化物與矽鍺合金介面,利用此性質應可製作出奈米尺寸的鍺晶粒。在本論文中,利用電漿助長化學氣相沉積系統分別製備非晶矽鍺/非晶氮氧化矽、非晶矽鍺/非晶氮化矽與非晶矽鍺氧/非晶氮化矽多層膜,並分別進行高溫氧化與退火處理,以形成包埋在氧化層內鍺奈米晶粒。實驗結果顯示對非晶矽鍺氧/非晶氮化矽多層膜進行高溫退火處理後,可得到多層、均勻分佈且尺寸大小為約5奈米的鍺奈米晶粒,鍺奈米晶粒的結晶性係藉由拉曼光譜量測的結果而推知的。
我們亦將嵌入鍺奈米晶粒的氧化層製作成金屬-氧化物-半導體電容器結構,探討鍺奈米晶粒的電荷儲存效應。在電流對電壓特性量測時發現電流跳動的現象,可歸因於來自p型矽基片的電洞充電效應。此外,由電容對電壓特性量測時所觀察到磁滯的現象,可推知鍺奈米晶粒的電荷儲存效果,其中所製作的多層鍺奈米晶粒的電荷儲存記憶窗口可達到3伏特。再者,我們也藉由各種不同頻率的電容對電壓量測結果,探討鍺奈米晶粒的電荷儲存現象。
摘要(英) Abstract
Since the Si will be preferentially oxidized during the high-temperature oxidation of SiGe alloy or annealing of SiGeO alloy and the segregated Ge atom will pile-up along the SiGe/SiO2 interface, it could be expected that the Ge nanocrystals would be tentatively formed with the Ge atom segregation and agglomeration. In this thesis, the multilayer a-SiGe/a-SiON, a-SiGe/a-SiN, and a-SiGeO/a-SiN thin-films have been prepared with a plasma enhanced chemical vapor deposition system, then with a thermal oxidation for a-SiGe/a-SiON and a-SiGe/a-SiN or a thermal annealing for a-SiGeO/a-SiN thin-films, the single /multilayer nano-meter scale Ge crystal dots have been obtained. The multilayer, well-separated, and 5 nm-sized Ge nanocrystals could be obtained with a thermal annealing technique. The crystallinity of Ge nanodots has been checked with a Raman spectroscopy.
The metal-oxide-semiconductor (MOS) capacitors ( MOS-Cs ) with Ge nanocrystals embedded in oxide have been fabricated to investigate the charge trapping effect of Ge nanocrystals. A current spike phenomenon in I-V curve has been observed. This was ascribed to the transient current of hole charging from p-type Si substrate. In addition, the hysteresis phenomenon has also been observed in C-V measurement. This indicated that the charge storage effect resulted from the formed Ge nanocrystals. The highest obtainable memory window with multilayer Ge nanocrystals was 3 V. Furthermore, the charge storage effects have been investigated by using the C-V measurement at various frequencies.
關鍵字(中) ★ 電壓-電流
★ 電壓-電容
★ 量子點
★ 拉曼光譜
★ 金氧半電容
★ 鍺
關鍵字(英) ★ C-V
★ Raman
★ I-V
★ Nanocrystals
★ Ge
論文目次 Contents
Table Captions………………………...…………………………….....IV
Figure Captions………………………………………………………....V
CHAPTER 1 Introduction 1
1.1 General background 1
1.2 Motivation 2
1.3 Organization of Thesis 2
CHAPTER 2 Nanocrystal Formation and MOS-C Operation Principles 3
2.1. Formation of Ge NCs 3
2.1.1 Selective oxidation of SiGe 3
2.1.2 Thermal annealing of SiGeO 4
2.2 Operation principles of MOS-C 4
2.2.1 Structure of MOS-C 4
2.2.2 Energy-band diagram of MOS-C 5
2.2.3 Charge storage with Ge NCs embedded in oxide of MOS-C 8
2.3 Program/Erase mechanism 12
2.3.1 Basic program mechanism 12
2.3.2 Basic erase mechanism 13
CHAPTER 3 Fabrication Processes and Measurement
Techiques 15
3.1 PECVD System 15
3.2 Fabrication of sample A series 15
3.3 Fabrication of sample B series 18
3.4 Fabrication of sample C series 20
3.5 Measurement Techniques 24
3.5.1 Micro-Raman spectroscopy 24
3.5.2 Energy dispersive spectrometer 24
3.5.3 Scanning electron microscope 25
3.5.4 Transmission electron microscope 25
3.5.5 Electrical characteristic measurement 26
CHAPTER 4 Material Characterizations of Thin-Film
Multilayers 27
4.1 Characterizations of sample A series 27
4.2 Characterizations of sample B series 30
4.3 Characterizations of sample C series 33
CHAPTER 5 Electrical Characterizations of Sample C3 39
5.1 I-V characteristics 39
5.2 C-V characteristics 44
5.3 C-V measurements at various frequencies 56
CHAPTER 6 Conclusion 68
REFERENCES 69
參考文獻 REFERENCES
[1] S. Tiwari, F. Rona, K. Chan, L. Shi, and H. Hanafi, “A silicon nanocrystals based memory,” Appl. Phys. Lett., vol. 68, p. 1377, 1996.
[2] T. Feng, H. B. Yu, M. Dicken, J. R. Heath, and H. A. Atwater, “Probing the size and density of silicon nanocrystals in nanocrystal memory device applications,” Appl. Phys. Lett., vol. 86, p. 033103, 2005.
[3] S. Huang, S. Banerjee, R. T. Tung, and S. Oda, “Quantum confinement energy in nanocrystalline silicon dots from high-frequency conductance measurement,” J. Appl. Phys., vol. 94, p.7261, 2003.
[4] P. W. Li, W. M. Liao, S. W. Lin, P. S. Chen, S. C. Lu, and M. –J. Tsai, “Formation of atomic-scale germanium quantum dots by selective oxidation of SiGe/Si-on-insulator,” Appl. Phys. Lett. vol. 83, p. 4628, 2003.
[5] M. Zacharias and R. Weigand, “A comparative study of Ge nanocrystals in SixGeyOz alloys and SiOx/GeOy multilayers,” J. Appl. Phys., vol. 81, p. 2384, 1997.
[6] Achyut Kumar, “Visible photoluminescence from Ge nanocrystal embedded into a SiO2 matrix fabricated by atmospheric pressure chemical vapor deposition,” Appl. Phys. Lett., vol. 68, p. 1189, 1996.
[7] W. R. Chen, T. C. Chang, Y. T. Hsieh, M. Sze, and C. Y. Chang, “Formation of Ge nanocrystals using Si1.33Ge0.67O2 and Si2.67Ge1.33N2 film for nonvolatile memory application,” Appl. Phys. Lett., vol. 91, p. 102106, 2007.
[8] A. Dana, S. Agan, S. Tokay, A. Aydinli, and T. G. Finstad, “Raman and TEM studies of Ge nanocrystal formation in SiOx:Ge/SiOx multilayers,” Phys. Stat. Sol., vol. 2, p. 288, 2007.
[9] D. A. Neamen, “Semiconductor Physics and Device,” McGraw. Hill, Inc., 3rd ed, Chap 11, p.449, 2006.
[10] B. De Salvo, G. Ghibaudo, P. Luthereau, T. Baron, B. Guillaumot, and G. Reimbold, “Transport mechanisms and charge trapping in thin dielectric/Si nano-crystals structures,” Solid-State Electron., vol. 45, p. 1513, 2001.
[11] S. K. Ray and K. Das, “Luminescence characteristics of Ge nanocrystals embedded in SiO2,” Opt. Mater., vol. 27, p. 948, 2005.
[12] C. J. Park, H. Y. Cho, S. Kim, Suk-Ho Choi, R. G. Elliman, J. H. Han, Chungwoo Kim, H.N. Hwang and C. C. Hwang, “Annealing temperature dependence of capacitance-voltage characteristics in Ge-nanocrystal-based nonvolatile memory structures,” J. Appl. Phys., vol. 99, p.36101, 2006.
[13] P. J. Wu, “Ge quantum-dots formed by selective Oxidation of a-Si:H/a-SiGe:H multilayer and fabrication of Ge quantum-dots MSM photodetectors,” M. S. Thesis, NCU, Taiwan, R.O.C, 2006.
[14] Y. M. Tang, X. L. Wu, L. W. Yang, G. S. Huang, T. Qiu, Y. Shi, G. G. Siu, and Paul K. Chu, “Local vibration at the surface of a Ge nanocrystal embedded in a silicon oxide matrix,” J. Appl. Phys., vol. 99, p. 014301, 2006.
[15] Y. M. Yang, X. L. Wu, L. W. Yang, G. S. Huang, G. G. Siu, and P. K. Chu, “Low-frequency Raman scattering of Ge and Si nanocrystals in silica matrix,” J. Appl. Phys., vol. 98, p. 064303, 2005.
[16] M. Kanoun, A. Souifi, T. Baron, and F. Mazen, “Electrical study of Ge-nanocrystal-based metal-oxide-semiconductor structures for p-type nonvolatile memory applications,” Appl. Phys. Lett., vol. 84, p. 5079, 2004.
[17] M. Kanoun, T. Baron, E. Gautier, and A. Souifi, “Charging effects in Ge nanocrystals embedded in SiO2 matrix for non volatile memory applications,” Mater. Sci. and Eng. C., vol. 26, p. 360, 2006.
[18] M. Kanoun, A. Souifi, T. Baron, and F. Mazen, “Electrical study of Ge-nanocrystal-based metal-oxide-semiconductor structures for p-type nonvolatile memory applications,” Appl. Phys. Lett., vol. 84, p. 5079, 2004.
[19] D. N. Kouvatsos, V. loannou-Sougleridis, and A. G. Nassiopoulou, “Charging effects in silicon nanocrystals within SiO2 layers fabricated by chemical vapor deposition, oxidation, and annealing,” Appl. Phys. Lett., vol. 82, p. 397, 2003.
[20] C. L. Heng and T. G. Finstad, “Electrical characteristics of a metal-insulator-semconductor memory structure containing Ge nanocrystal,” Phys. E., vol. 26, p. 386, 2005.
指導教授 洪志旺(Jyh-Wong Hong) 審核日期 2008-7-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明