博碩士論文 955201075 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:29 、訪客IP:18.219.15.112
姓名 簡村誠(Tsun-Cheng Chien)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 口腔磁振影像舌頭構造之自動分割
(Automatic Segmentation of the Tongue Structure from Human Oral MR Images)
相關論文
★ 獨立成份分析法於真實環境中聲音訊號分離之探討★ 口腔核磁共振影像的分割與三維灰階值內插
★ 數位式氣喘尖峰氣流量監測系統設計★ 結合人工電子耳與助聽器對中文語音辨識率的影響
★ 人工電子耳進階結合編碼策略的中文語音辨識成效模擬--結合助聽器之分析★ 中文發聲之神經關聯性的腦功能磁振造影研究
★ 利用有限元素法建構3維的舌頭力學模型★ 以磁振造影為基礎的立體舌頭圖譜之建構
★ 腎小管之草酸鈣濃度變化與草酸鈣結石關係之模擬研究★ 微波輸出窗電性匹配之研究
★ 以軟體為基準的助聽器模擬平台之發展-噪音消除★ 以軟體為基準的助聽器模擬平台之發展-回饋音消除
★ 模擬人工電子耳頻道數、刺激速率與雙耳聽對噪音環境下中文語音辨識率之影響★ 用類神經網路研究中文語音聲調產生之神經關聯性
★ 教學用電腦模擬生理系統之建構★ 以軟體為基準的助聽器模擬平台之發展-方向性麥克風
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究的最終目標是利用建構口腔舌頭模型,來研究生理語音構音的機制。因此利用口腔磁振影像分割出舌頭構造所重建的舌頭模型來代表實際的舌頭大小是很重要的步驟,而舌頭磁振影像分割的好壞則關係著重建出來的三維影像準確度。本研究主要目的在節省時間人力成本考量下,對口腔磁振影像自動分割出舌頭構造,並與手動分割出來的結果做比較以瞭解自動分割的準確性。本研究提出結合等位函數法與梯度向量流蛇模型的方法,利用等位函數法做影像自動分割,再用梯度向量流蛇模型做修正舌頭邊緣並平滑化輪廓的步驟。結果顯示本研究一個個案分割的時間約需5.5分鐘,比熟悉舌頭構造操作者手動分割所需22.6分鐘來得快。本研究的準確評估方法是利用相似係數法,結果顯示我們用的方法對大部分切面之平均相似係數都大於0.88 (8位個案,4女、4男),達到不錯的結果。比較本研究分割與手動分割重建後的三維影像在外形上大致相同只是有些不平整,但從中央矢狀切面來看舌頭內部構造在直覺上沒有差別。
摘要(英) The long term purpose of this research is to study the physiological articulation mechanism based on a three-dimensional (3D) tongue model that is reconstructed from oral magnetic resonance images (MRI). The accuracy of reconstructed 3D tongue depends on the results of image segmentation of tongue structure from oral MRI data. The main purpose of this study is to automatically segment tongue structure from the oral MRI data not only to save time and efforts for data processing but also to keep the accuracy of automatic segmentation the same as the manual segmentation. This study adopted Level Set (LS) method to segment image automatically and used Gradient Vector Flow Snake (GVFS) method to move the contours toward the tongue boundary and to smooth the segmented contours. The results of our study showed that 5.5 minutes were taken to segment one subject automatically. This is faster than the time needed (22.6 min.) for manual segmentation by a well-trained operator. Similarity index was used to evaluate the accuracy of our segmentation. The results by our method showed average slice similarity index is greater than 0.88 (8 subjects, 4 females, 4 males). This indicates excellent agreement. In addition, the 3D tongue reconstructed from this study is less smooth than by the manual segmentation, and the shape of the 3D tongue reconstructed from this study is approximately similar to the manual segmentation. Finally, the internal structure of the tongue observed from this study from the tongue mid-sagittal slice is visually the same as the manual segmentation.
關鍵字(中) ★ 影像分割
★ 磁振影像
★ 等位函數法
★ 梯度向量流蛇模型
★ 蛇模型
關鍵字(英) ★ Image Segmentation
★ Magnetic Resonance Imaging (MRI)
★ Level Set
★ Gradient Vector Flow Snake
★ Snake
論文目次 中文摘要 . I
Abstract II
致謝 . IV
目錄 . V
圖目錄 VIII
表目錄 XIII
第一章 序論 1
1.1 研究動機 1
1.2 文獻探討 2
1.2.1 傳統分割方法 2
1.2.2 蛇模型分割法 6
1.2.3 等位函數法 10
1.3 論文架構 12
第二章 等位函數法 14
2.1傳統等位函數法 14
2.1.1 等位函數方程式 16
2.1.2 等位函數的重初始化 18
2.2 不用重初始化的等位函數 19
2.2.1 數值方法 23
2.3 梯度向量流蛇模型 23
2.3.1 數值方法 27
第三章 模型參數與方法 29
3.1 磁振影像說明 29
3.2 模型參數 30
3.2.1 等位函數法參數 30
3.2.2 梯度向量流蛇模型參數 34
3.3 研究方法 37
3.3.1 評估方法 44
第四章 結果與討論 46
4.1 影像分割結果 46
4.2影像分割結果評估 51
4.3 討論 56
第五章 結論與未來展望 67
5.1 結論 67
5.2 未來展望 67
附錄 A 蛇模型能量最小化的Euler equation 69
附錄 B 蛇模型能量最小化的數值方法 72
附錄 C 用來決定參數ν的經驗法則 75
附錄 D 8個案經過修正後的分割、評估、重建的結果 77
參考文獻 101
參考文獻 Bartko, J. J. (1991). Measurement and reliability: Statistical thinking considerations. Schizophrenia Bullet, 17, 483-489.
Canny, J. F. (1986). A Computational Approach to Edge Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8, 679-698.
Caselles, V., Kimmel, R., & Sapiro, G. (1997). Geodesic Active Contours.International Journal of Computer Vision, 22, 61-79.
Chan, T. F., & Vese, L. A. (2001). Active contours without edges. IEEE Trans. Image Processing, 10, 266-277.
Cohen, L. D. (1991). On active contour models and balloons. CVGIP: Image Understand, 53, 211–218.
Cohen, L. D., & Cohen, I. (1993). Finite-element methods for active contour models and balloons for 2-D and 3-D images. IEEE Trans. Pattern Anal. Machine Intell, 15, 1131–1147.
Courant, R., & Hilbert, D. (1953). Methods of Mathematical Physics, 1. New York: Interscience
Evans, L. (1998). Partial Differential Equations. Providence: American Mathematical Society.
Goldenberg, R., Kimmel, R., Rivlin, E., & Rudzsky, M. (2001). Fast Geodesic Active Contours. IEEE Trans. on Pattern Analysis and Machine Intelligence, 10, 1467-1475.
Gonzalez R. C., & Woods R. E. (2002). Digital Image Processing 2/e. Pearson Edu. Inc. Prentice Hall.
Grevera, G. J., & Udupa, J. K. (1996). Shape-Based Interpolation of Multidimensional Grey-Level Images. IEEE Trantransactions on Medical Imaging, 15, 881–892.
Han, X., Xu, C., & Prince, J. L. (2003). A Topology Preserving Level Set Method for Geometric Deformable Models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25, 755-768.
Hao, J., Shen, Y., & Wang, Q. (2007). Segmentation for MRA Image: An Improved Level-Set Approach. IEEE Transactions on Instrumentation and Measurement, 56, 1316-1321.
Kass, M., Witkin, A., & Terzopoulos, D. (1987). Snakes: active contour models. intern. Journal of Computer Vision, 321–331.
Lee T. Y., & Wang W. H. (2000). Morphology-Based Three-Dimensional Interpolation. IEEE Transactions on Medical Imaging, 19, 711–721.
Li, C. (2005). http://www.engr.uconn.edu/~cmli/
Li, C., Xu, C., Gui, C., & Fox, M. D. (2005). Level set evolution without re-initialization: a new variational formulation. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1, 430-436.
Lobregt, S., & Viergever, M. A. (1995). A Discrete Dynamic Contour Model. IEEE Trans.on Medical Imaging, 14, 12-24.
Ma, Wei-Ying., & Manjunath B.S. (2000). EdgeFlow. a technique for boundary detection and image segmentation. IEEE Transactions on Image Processing, 9, 1375-1388.
Malladi, R., Sethian, J., & Vemuri, B. (1995). Shape modeling with front propagation: A level set approach. IEEE Trans. Pattern Anal. Machine Intell, 17, 158–175.
Miller, J. V., Breen, D. E., Lorensen, W.E., OBara, R.M., & Wozny, M.J. (1991). Geometrically Deformed Models: A Method for Extracting Closed Geometric Models from Volume Data Computer Graphics, 25, 217–226.
Osher, S., & Sethian, J. A. (1988). Fronts propagation with curvature dependent speed: Algorithms based on Hamilton–Jacobi formulations. J. Computat. Phys, 79, 12–49.
Osher, S., & Fedkiw, R. (2003). Level set methods and dynamic implicit surfaces. New York: Springer.
Paragios, N., & Deriche, D. (2000). Geodesic active contours and level sets for the detection and tracking of moving objects. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22, 266-280.
Pratt, W. (1978). Digital Image Processing. New York: Wiley. 495–501.
Sethian, J. A., & Strain, J. (1992). Crystal growth and dendritic solidification. J. of Computational Physics, 98, 231-253.
Sussman, M., Fatemi, E., Smereka, P., & Osher, S. (1994). An Improved Level Set Method for Incompressible Two-Phase Flows. Computer & Fluids, 27, 663-680.
Xu, C., & Prince, J. L. (1998). Snakes, shapes, and gradient vector flow. IEEE Trans. Image Processing, 7, 359–369.
Xu, C., & Prince, J. L. (1999). http://iacl.ece.jhu.edu/projects/gvf/
Yezzi, A. Jr., Kichenassamy S., Kumar, A., Olver, P. & Tannenbaum, A. (1997). A Geometric Snake Model for Segmentation of Medical Imagery. IEEE Transactions on Medical Imaging, 16, 199-209.
Zijdenbos, A.P., Dawant, B.M., Margolin, R.A., & Palmer, A.C. (1994). Morphometric analysis of white matter lesions in MR images: Method and validation. IEEE Transactions on Medical Imaging, 13, 716-724.
王菘義,(民96) 以磁振造影為基礎的立體舌頭圖譜之建構,國立中央大學電機系碩士論文
何易展,(民90) 細胞顯微影像之分割、追蹤與運動分析,國立成功大學資訊工程系碩士論文
何昌憲,(民93) 等位函數法在影像切割之研究,國立交通大學資訊科學系碩士論文
吳漢哲,(民93) 口腔核磁共振影像的分割與三維灰階值內插,國立中央大學電機系碩士論文
李俞融,(民93) 以適應性多重等階集合法做彩色影像分割,國立中央大學資訊工程系碩士論文
張家榮,(民89) 使用等高集合法對多目標移動物追蹤之研究,元智大學電機工程系碩士論文
游景皓,(民94) 以等位函數法模擬三維潰壩流,逢甲大學水利工程系碩士論文
蔡孟修,(民94) 基於等位函數法之運動物體偵測與追蹤,國立交通大學電子工程系碩士論文
指導教授 吳炤民(Chao-Min Wu) 審核日期 2009-2-2
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明