博碩士論文 955201086 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:18.117.93.73
姓名 薛凱鴻(Kai-Hung Hsueh)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 阻抗式生物感測器應用於人類白蛋白檢測之研究
(The Research of Impedimetric Biosensors for Human Serum Albumin Detecton)
相關論文
★ 電子式基因序列偵測晶片之原型★ 眼動符號表達系統之可行性研究
★ 利用網印碳電極以交流阻抗法檢測糖化血紅素★ 電子式基因序列偵測晶片可行性之研究
★ 電腦化肺音擷取系統★ 眼寫鍵盤和眼寫滑鼠
★ 眼寫電話控制系統★ 氣喘肺音監測系統之可行性研究
★ 肺音聽診系統之可行性研究★ 穿戴式腳趾彎曲角度感測裝置之可行性研究
★ 注音符號眼寫系統之可行性研究★ 英文字母眼寫系統之可行性研究
★ 數位聽診器之原型★ 使用角度變化率為基準之心電訊號壓縮法
★ 電子式基因微陣列晶片與應用電路研究★ 電子聽診系統應用於左右肺部比較之臨床研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究著重於開發一種阻抗式生物感測器應用人類白蛋白(human serum albumin,HSA)偵測。研究初期設計單一式及陣列式指叉電極兩種感測晶片,藉由微影製程技術實現,並透過LCR meter及電化學阻抗分析儀分析感測晶片的電容及阻抗特性。
在人類白蛋白捕捉檢測上,透過化學修飾的方法在晶片表面先固定一層自組單層膜,再以針對人類白蛋白具有高親和性的藍色染料Cibacron Blue F3GA(CB)作為捕捉不同濃度人類白蛋白的觸手。實驗結果發現,單一式比陣列式指叉電極感測晶片對於人類白蛋白捕捉上有較高的分辨度,約為6.7倍,且單一式指叉電極感測晶片可量測到的人類白蛋白濃度為0.1到0.4 mg/ml,與人類白蛋白被捕捉前後之阻抗改變量成一線性關係,其關係式為Y=6.13+546.78X,R2=0.997。
在本研究為了達到可攜式的人類白蛋白檢測方式,也建立一套微流道感測系統,包含電容偵測電路、微流道系統及LabVIEW監測畫面。在電容偵測電路的量測上,單一式指叉電極感測晶片可偵測到0.1到0.4 mg/ml之人類白蛋白濃度,與人類白蛋白被捕捉前後之直流電壓改變量成一線性關係,其關係式為Y=17.91+323.72X,R2=0.999。
摘要(英) This research focused on developing an impedimetric biosensor for human serum albumin (HSA) detection. Two kinds of chips, unitary-type interdigitated electrode (u-IDE) and array-type interdigitated electrode (a-IDE) were designed in early study, both were made by microfabrication technology. The chips were measured by the LCR meter and electrochemical impedance analyzer (IM-6ex) to analyze the character of capacitance and impedance.
In HSA detection, the method of surface modification was based on self-assembled monolayer and the blue dye Cibacron Blue F3GA (CB) with high affinity for HSA was used as a receptor to capture the different concentrations of HSA. The experimental results showed that the resolution of HSA detection, the u-IDE was higher than the a-IDE about 6.7 times. The u-IDE can detect the concentrations of HSA between 0.1 and 0.4 mg/ml with IM-6ex. The impedance change of before and after HSA being captured by CB had a linear relationship with the concentrations of HSA. The regression equation was Y=6.13+546.78X with R2=0.997.
In order to achieve the portable HSA detection method, we also built a micro-fluid detection system. This system included the capacitance detection circuit, micro-fluid system and LabVIEW monitoring instrument. The u-IDE can detect the concentrations of HSA between 0.1 and 0.4 mg/ml with the capacitance detection circuit. The DC voltage change of before and after HSA being captured by CB had a linear relationship with the concentrations of HSA. The regression equation was Y=17.91+323.72X with R2=0.999.
關鍵字(中) ★ 人類白蛋白
★ 阻抗式生物感測器
★ 指叉電極
關鍵字(英) ★ interdigitated electrode
★ human serum albumin
★ impedimetric biosensor
論文目次 中文摘要.....................................................................................................I
英文摘要...................................................................................................II
誌謝..........................................................................................................IV
目錄............................................................................................................V
圖目錄......................................................................................................IX
表目錄.....................................................................................................XV
第一章 前言...............................................................................................1
1-1 腎臟簡介......................................................................................2
1-1-1 結構與功能........................................................................2
1-1-2 腎臟病種類........................................................................4
1-2 蛋白尿臨床檢測..........................................................................6
1-2-1 蛋白尿臨床分析................................................................6
1-2-2 蛋白尿檢測........................................................................7
1-3 文獻回顧......................................................................................9
1-3-1 生物感測器介紹................................................................9
1-3-1-1 歷史發展..................................................................9
1-3-1-2 定義及構成............................................................11
1-3-1-3 類型及偵測原理....................................................13
1-3-2 電化學交流阻抗背景......................................................18
第二章 研究背景....................................................................................21
2-1 研究動機....................................................................................21
2-2 研究目標....................................................................................22
第三章 阻抗式感測器製作及量測方法................................................24
3-1 阻抗式感測晶片製作................................................................24
3-1-1 感測晶片設計..................................................................24
3-1-2 感測晶片基板選用..........................................................28
3-1-3 實驗藥品、材料及儀器設備..........................................28
3-1-3-1 藥品及材料............................................................28
3-1-3-2 儀器設備................................................................29
3-1-4 製程步驟與相關參數......................................................31
3-2 表面改質與人類白蛋白捕捉....................................................36
3-2-1 實驗方法..........................................................................36
3-2-2 實驗藥品、材料及儀器設備..........................................37
3-2-2-1 藥品及材料............................................................37
3-2-2-2 儀器設備................................................................37
3-2-3 表面改質步驟..................................................................39
3-3 阻抗式感測晶片量測方法........................................................42
3-3-1 電化學阻抗分析儀量測-IM-6ex....................................42
3-3-2 微流道感測系統開發......................................................44
3-3-2-1 感測電路................................................................45
3-3-2-1-1 主體電路與量測原理.................................45
3-3-2-1-2 整體電路架構.............................................46
3-3-2-1-3 各電路介紹.................................................47
3-3-2-2 微流道設計............................................................52
3-3-2-3 LabVIEW監測系統..............................................56
3-3-2-3-1 LabVIEW軟體簡介...................................56
3-3-2-3-2 LabVIEW監測架構...................................60
第四章 結果與討論................................................................................62
4-1 阻抗式感測晶片製作結果........................................................62
4-1-1 製程結果分析..................................................................62
4-1-2 電性分析..........................................................................65
4-1-2-1 電容特性................................................................65
4-1-2-2 交流阻抗特性........................................................69
4-1-2-2-1 等效電路......................................................69
4-1-2-2-2 不同溶液下之阻抗分析.............................72
4-2 微流道感測系統整合結果........................................................81
4-2-1 感測電路實現..................................................................81
4-2-1-1 實際電路組成........................................................81
4-2-1-2 各電路測試結果....................................................84
4-2-2 微流道系統組裝及測試結果..........................................89
4-2-3 LabVIEW監測系統測試結果........................................92
4-3 化學改質步驟結果....................................................................95
4-4 人類白蛋白捕捉檢測結果........................................................97
4-4-1 電化學阻抗分析儀量測結果分析..................................97
4-4-1-2 單一式及陣列式指叉電極感測晶片測試...........97
4-4-1-3 不同人類白蛋白濃度比較....................................99
4-4-2 感測電路量測結果分析................................................102
第五章 結論...........................................................................................107
未來展望.................................................................................................109
參考文獻.................................................................................................110
VIII
參考文獻 [1] 台灣腎臟醫學會(2006)。台灣腎臟醫學會2004透析年度報告。2008年7月2日取自http://www.tsn.org.tw/index2.html
[2]2008年6月28日取自http://www.cauhk.com/bran/dis_info/renal.htm
[3] 陳鴻均(民85)。腎臟病專刊(一)。高醫醫訊,16(6)。
[4] Lin, C.I., Chu, W.P., Joseph, K.A., Wong, Y.C., Chang, C.K., Lee, Y. D., Journal of Medical and Biological Engineering 23(2), 53-56.
[5] Spichiger-Keller, U.E., Chemical Sensors and Biosensors for Medical and Biological Applications, Wiley-VCH.
[6] 2008年6月25日取自http://mmrl.cgu.edu.tw/rehab/mme/organize/
chap2/senor/no2/no2_1.htm
[7] 殷立德,“以離子感測場效電晶體做為生物感測器之研究”,中原大學醫學工程研究所博士論文,2001。
[8] Bernstein, J., 1868. Uber den zeitlichen verlanf der negativen schwankung des nervenstroms. The Journal of the Center for Archaeoastronomy 1, 173-207.
[9] Nishizawa, M., Matsue, T., Uchida, I., 1992. Anal. Chem. 64, 2642.
[10] Sheppard, N.F., Tucker, R.C., Wu, C., 1993. Anal. Chem. 65, 1199.
[11] Niwa, O., Morita, M., Tabei, H., 1990. Anal. Chem. 62, 447.
[12] Niwa, 0., Morita, M., Tabei, H., 1991. Electroanalysis. 3, 163.
[13] House, S.D., Anderson, L.B., 1994. Anal. Chem. 66, 193.
[14] Robertson, J.D., 1960. The molecular structure and contact realaptionships of cell membranes. Progress in Biophysics and Molecular Biology 10, 343 – 418.
[15] Coster, H.G.L., Chilcott, T.C., Coster, A.C.F., 1999. Anomalous transport effects in the impedance of porous film electrodes. Electrochemistry Communication 1, 429-435.
[16] Shalini, R., Munichandraiah, N. Shukla, A.K., 2000. A review of state-of-charge indication of batteries by means of a.c. impedance measurements. Journal of Power Sources 87, 12-20.
[17] Bandyopadhyay, K., Vijayamohanan, K., Shekhawat, G.S., Gupta, R.P., 1998. Impedance analysis of self-assembled naphthalene disulfide monolayer on gold using external redox probes. Journal of Electroanalytical Chemistry 447, 11-16.
[18] Boubour, E., Lennox, R.B., 2000. Insulating properties of self-assembled monolayers monitored by impedance spectroscopy. Langmuir 16, 4222-4228.
[19] Alexis, Z., Igor, J., Gojmir, L., 1999. Low frequency alternating electric fields inhibit lactose uptake in Kluyveromyces marxianus. Bioelectrochemistry and Bioenergetics 48, 481-484.
[20] Glaever, I., Keese, C.R. 1986. IEEE Trans. Bio-Med. Eng. 33, 242.
[21] Mitra, P., Keese, C.R., Lawrence, D.A., Giaever, I., 1990. Biotechniques 11, 504.
[22] Xiao, C., Lachance, B., Sunahara, G., Luong, J.H.T., 2002. Anal. Chem. 74, 1333.
[23] Luong, J.H.T., Habibi-Razaei, M., Meghrous, J., Xiao, C., Male, K.B., Kamen, A., 2001. Anal. Chem. 73, 1844.
[32] Mishra, N.N., Retterer, S., Zieziulewicz, T.J., Isaacson, M., Szarowski, D., Mousseau, D.E., Lawrence, D.A., Turner, J.N., 2005. On-chip micro-biosensor for the detection of human CD4+ cells based on ac impedance and optical analysis. Biosens. Bioelectron. 21, 696–704.
[33] Krommenhoek, E.E., Gardeniers, J.G.E., Bomer, J.G., Van den Berg, A., Li, X., Ottens, M., Van der Wielen, L.A.M., Van Dedem, G.W.K., Van Leeuwen, M., Van Gulik, W.M., Heijnen, J.J., 2006. Monitoring of yeast cell concentration using a micromachined impedance sensor. Sens. Actuators B 115, 384–389.
[34] Radke, S.M., Alocilja, E.C., 2004. Design and fabrication of a microimpedance biosensor for bacterial detection. IEEE Sens. J. 4, 434–440.
[35] G´omez-Sj¨oberg, R., Morisette, D.T., Bashir, R., 2005. Impedance microbiology-on-a-chip: microfluidic bioprocessor for rapid detection of bacterial metabolism. IEEE J. MEMS 14, 829–838.
[36] Arwin, H.I., Lundstrom, I., Stanbro, W.D., 1982. Electrode desorption method for determination of enzymatic activity. Med. Biol. Eng. Comput. 20, 362–374.
[37] Newman, A.L., Hunter, K.W., Stanbro, W.D., 1986. The capacitive affinity sensor: a new biosensor, in: Proceedings of the Second International Meeting on Chemical Sensors, Bordeaux, France, July 7–10, pp. 596–598.
[38] Ehret, R., Baumann, W., Brischwein, M., Schwinde, A., Stegbauer, K., Wolf, B., 1997. Monitoring of cellular behavior by impedance measurements on interdigitated electrode structures. Biosens. Bioelectrons. 12 (1), 29–41.
[39] Morita, M., Niwa, O., Horiuchi, T., 1997. Interdigitated array microelectrodes as electrochemical sensors. Electrochim. Acta 42, 3177–3183.
[40] Cohen, A.E., Kunz, R.R., 2000. Large-area interdigitated array microelectrodes for electrochemical sensing. Sens. Actuators B 62, 23–29.
[41] Kim, S.K., Hesketh, P.J., Li, C., Thomas, J.H., Halsall, H.B., Heineman, W.R., 2004. Fabrication of comb interdigitated electrodes array (IDA) for a microbead-based electrochemical assay system. Biosens. Bioelectron. 20, 887–894.
[42] Yang, L., Li, Y., Griffis, C.L., Johnson, M.G., 2004. Interdigitated microelectrode (IME) impedance sensor for the detection of viable Salmonella typhimurium. Biosens. Bioelectron. 19, 1139–1147.
[43] Chang, B.W., Chen, C.H., Ding, S.J., Chen, D.C.H., Chang, H.C., 2005. Impedimetric monitoring of cell attachment on interdigitated microelectrodes. Sens. Actuators B 105, 159–163.
[44] Van Gerwen, P., Laureyn, W., Laureys, W., Huyberechts, G., Beeck, M.O.D., Baert, K., Suls, J., Sansen, W., Jacobs, P., Hermans, L., Mertens, R., 1998. Nanoscaled interdigitated electrode arrays for biochemical sensors. Sens. Actuators B 49, 73–80.
[45] Laureyn, W., Frederix, F., Van Gerwen, P., Maes, G., 1999a. Nanoscaled interdigitated gold electrodes for impedimetric immunosensing. Transducers’99, Digest of Technical papers, Sendai, Japan, 7–10 June 1884–1885.
[46] Laureyn, W., Nelis, D., Van Gerwen, P., Baert, K., Hermans, L., Maes, G., 1999b. Nanoscaled interdigitated titanium electrodes for
impedimetric biosensing. Eurosensors XIII, In: Proceedings of the 13th European Conference on Solid-State Transducers, 12–15 September, Hague, The Netherland.
[47] Laureyn, W., Nelis, D., Van Gerwen, P., Baert, K., Hermans, L., Magnee, R., Pireaux, J.J., Maes, G., 2000. Nanoscaled interdigitated titanium electrodes for impedimetric biosensing. Sens. Actuat. B 68 (1–3), 360–370.
[48] Ehret, R., Baumann, W., Brischwein, M., Schwinde, A., Wolf, B., 1998. On-line control of cellular adhesion with impedance measurements using interdigitated electrode structures. Med. Biol. Eng. Comput. 36, 365–370.
[49] Shao, Y., Mirkin, M.V., Fish, G., Kokotov, S., Palanker, D., Lewis, A., 1997. Nanometer-sized electrochemical sensors. Anal. Chem. 69, 1627–1634.
[50] Zhu, X., Ahn, C.H., 2005. Electrochemical determination of reversible redox species at interdigitated array micro/nanoelectrodes using charge injection method. IEEE Trans. Nanobiosci. 4, 164–169.
[51] Dharuman, V., Grunwald, T., Nebling, E., Albers, J., Blohm, L., Hintsche, R., 2005. Label-free impedance detection of oligonucleotide hybridization on interdigitated ultramicroelectrodes using electrochemical redox probes. Biosens. Bioelectron. 21, 645–654.
[52] Kassab, A., Yavuz, H., Odabasi, M., Denizli, A., 2000. Human serum albumin chromatography by Cibacron Blue F3GA-derived microporous polyamide hollow-fiber affinity membranes. Journal of Chromatography B 746, 123–132.
[53] Zou, Z., Kai, J., Rust, M.J., Han, J., Ahn, C.H., 2007. Functionalized nano interdigitated electrodes arrays on polymer with integrated microfluidics for direct bio-affinity sensing using impedimetric measurement. Sensors and Actuators A 136, 518–526.
[54]惠汝生(民95)。Labview 8.X圖控程式應用。臺北市:全華科技圖書,p23~44。
[55]張西川(民82)。電子電路零組件應用手冊(初版)(譯者 譯)。全華科技圖書,p49~50。
[56] Olthuis, W., Steekstra, W., Bergveld, P., 1995. Theoretical and experimental determination of cell constants of planar-interdigitated electrolyte conductivity sensors. Sens. Actuators B: Chem. 24–25, 252–256.
[57] Lvovich, V.F., Liu, C.C., Smiechowski, M.F., 2006. Optimization and fabrication of planar interdigitated impedance sensors for highly resistive non-aqueous industrial fluids. Sensors and Actuators B 119, 490–496.
[58] Lorne, B., Perrier, F., Avouac, J.P., 1999. Streaming potential measurements 1. Properties of the electrical double layer from crushed rock samples. Journal of Geophysical Research 104(B8), 17857–17877.
指導教授 蔡章仁(Jang-Zern Tsai) 審核日期 2008-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明