博碩士論文 955201101 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:39 、訪客IP:18.217.68.162
姓名 林威志(Wei-Chih Lin)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 應用於生理訊號量測系統之截波穩定型類比前端電路
(An Analog Front-End Circuit for Bio-signal Measurement System Using Chopper Stabilization Technique)
相關論文
★ 應用於2.5G/5GBASE-T乙太網路傳收機之高成本效益迴音消除器★ 應用於IEEE 802.3bp車用乙太網路之硬決定與軟決定里德所羅門解碼器架構與電路設計
★ 適用於 10GBASE-T 及 IEEE 802.3bz 之高速低密度同位元檢查碼解碼器設計與實現★ 基於蛙跳演算法及穩定性準則之高成本效益迴音消除器設計
★ 運用改良型混合蛙跳演算法設計之近端串音干擾消除器★ 運用改良粒子群最佳化演算法之近端串擾消除器電路設計
★ 應用於多兆元網速乙太網路接收機 類比迴音消除器之最小均方演算法電路設計★ 光耦合隔離系統 之接收端晶片電路設計與實現
★ 應用於光耦合隔離系統之發送端雜訊整形 類比轉數位轉換器★ 應用於數位視頻廣播系統之頻率合成器及3.1Ghz寬頻壓控震盪器
★ 地面數位電視廣播基頻接收器之載波同步設計★ 適用於通訊系統之參數化數位訊號處理器核心
★ 以正交分頻多工系統之同步的高效能內插法技術★ 正交分頻多工通訊中之盲目頻域等化器
★ 兆元位元率之平行化可適性決策回饋等化器設計與實作★ 應用於數位視頻廣播系統中之自動增益放大器 及接受端濾波器設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近幾年來不同生醫應用層面的植入式生理訊號量測系統發展趨向於微小化並搭配無線方式傳輸訊號。以整體系統來看,從電極端接收的生理訊號極為微弱,為了完整地記錄生理訊號,其電路設計上朝向低雜訊、高解析度、低功率消耗等特點邁進。
本篇主旨為提出一應用於生醫訊號量測系統之全差動對稱式類比前端電路,可針對極微弱的神經電圖(Electromyography, ENG)訊號作一記錄。為了將其中低頻的非理想成份諸如閃爍雜訊、直流偏移電壓等消除,提高其訊號雜訊比,以增加記錄的神經訊號的可辨度,本電路中放大級採用截波穩定型的技術。再者,為了降低整體電路的功率消耗,將輸入級的場效電晶體操作於弱反轉區。而截波穩定型放大器當中的帶通濾波器使用不同於一般濾波器的實現方式完成。本文提出架構由差動差分放大器與米勒積分器所構成,此架構可將從電極與電解溶液介面而產生的直流偏移電壓消除。
本文所提整體類比前端電路包含偏壓電路、時脈產生器、截波穩定型放大器、後置放大器、和二階連續時間低通濾波器。在電路實現上,在有效頻寬約9.3 KHz下,其直流電壓增益達到62.9 dB、總等效輸入相關雜訊電壓約為7.05 μVrms、其有效位元數達到10位元的解析度。使用台積電0.18 μm 標準CMOS 1P6M製程完成,其晶片面積為0.88 x 0.43 mm2。在1.8 V電源供應下,總功率消耗約為230 μW。
摘要(英) In recent years, the implanted bio-signal measurement devices for various bio-medical applications tend to be minimized and with wireless transmission capabilities. Since physiological signals from electrodes are very tiny and are difficult to be recorded, design of the bio-signal analog-front-end circuits are always with the features of low-noise, high resolution, and low power consumption.
This work presents a fully differential and analog-front-end circuit for bio-signal measurement system that can be used to record the very tiny electroneurography (ENG) signals. Chopper stabilization technique (CHS) is employed in the amplification stage to eliminate the non-ideal low-frequency effects, such as the flicker noise and the DC-offset voltage. It improves the signal-to-noise ratio (SNR) and offers a higher resolution for the recorded neuron signals. In order to decrease the power dissipation of the system, input stages of field-effect transistors are designed to be operating at the weak-inversion region. In addition, the band-pass filter of the chopper-stabilized amplifier consists of a differential difference amplifier and a Miller integrator, which are different to the traditional design with passive resistors and capacitors. The purpose of this BPF is aimed to cancel out the DC-offset voltage from the electrode-electrolyte interface.
The whole AFE circuit includes a bias circuit, a clock generator, a chopper stabilization amplifier, a post-amplifier, and a second-order continues-time low-pass filter. Such AFE circuit is implemented in the TSMC 0.18-μm one-poly six-metals CMOS process and provides a mid-band gain of 62.9 dB, a signal bandwidth approximates up to 9.3 KHz, a total equivalent input-referred noise of about 7.05 μVrms, and a 10-bit resolution. Supplied at 1.8 V, the proposed AFE circuit consumes around 230 μW. The chip area is 0.88 × 0.43 mm2.
關鍵字(中) ★ 米勒積分器
★ 差動差分放大器
★ 截波穩定
★ 類比前端
關鍵字(英) ★ differential difference amplifier
★ miller integrator
★ analog front-end
★ chopper stabilization
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vii
表目錄 ix
第一章 緒論 1
1.1 背景 1
1.2 研究動機 3
1.3 論文架構 4
第二章 類比前端電路設計考量 5
2.1 生理訊號類別 5
2.2 生醫電位電極之等效模型 7
2.3 設計考量 9
第三章 雜訊源和殘餘偏壓現象探究與截波穩定技術理論分析 12
3.1 雜訊源 12
3.1.1 熱雜訊 (Thermal Noise) 13
3.1.2 閃爍雜訊 (Flicker Noise) 15
3.2 殘餘偏壓現象 16
3.2.1 通道電荷注入 (Channel Charge Injection) 17
3.2.2 時脈饋入 (Clock Feedthrough) 18
3.3 電荷注入抵消 19
3.3.1 模仿(dummy)元件 19
3.3.2 互補式開關(Complementary Switches) 21
3.3.3 差動電路架構 22
3.4 截波穩定技術 (Chopper Stabilization Technique) 22
3.4.1 雜訊分析 27
3.4.2 殘餘偏壓分析 28
3.5 弱反轉區(weak inversion region)特性 32
第四章 類比前端電路硬體架構 38
4.1 硬體架構簡介 38
4.2 時脈產生器 (Clock Generator) 39
4.3 調變器 (Modulator / Demodulator) 40
4.4 帶通濾波器 (Band-Pass Filter) 41
4.4.1 差動差分放大器 (Differential Difference Amplifier, DDA) 42
4.4.2 米勒積分器(Miller Integrator) 44
4.4.3 共模回授 (Common-Mode Feedback, CMFB) 48
4.4.4 帶通濾波器硬體電路 50
4.4.5 雜訊源分析 50
4.5 後置放大器 (Post Amplifier) 52
4.6 低通濾波器 (Low-Pass Filter) 53
4.7 主動式元件 59
4.8 類比前端電路 60
第五章 類比前端電路實現與模擬結果 61
5.1 各運算放大器之模擬結果 61
5.2 類比前端電路之模擬結果 63
5.3 線性度模擬分析 65
5.4 製程與溫度偏移模擬 67
5.5 製程偏移討論與未來改進方式 68
5.6 雜訊模擬分析 69
5.7 總結與佈局說明 71
第六章 結論 75
參考文獻 76
附錄 81
參考文獻 [1] J. G. Webster, “Medical instrumentation application and design,” Canada: John Wiley & Sons, Inc., 1998.
[2] M. F. Bear, B. W. Connors, and M. A. Paradiso, “Neuroscience: exploring the brain,” Baltimore: Lippincott Williams & Williams Inc., 1996.
[3] K.D. Wise, “A multi-channel microprobe for biopotential recording,” Ph.D. dissertation, Stanford, CA, 1969.
[4] C. T. Charles, “Electrical components for a fully implantable neural recording system,” The University of Utah, Aug. 2003.
[5] M. Dagtekin, “A chopper modulated amplifier system design for in vitro neural recording,” North Carolina State University, 2006.
[6] J. W. Lu, “Analysis and design of electrical stimulator and impedance measurement circuitry for visual prostheses,” Nation Central University, Jul. 2008.
[7] A. B. Schwartz, X. T. Cui, D. J. Weber, and D. W. Moran, “Brain controlled interfaces: movement restoration with neural prosthetics,” Neuron, vol. 52, pp. 205–220, 2006.
[8] S. C. Lee, “Design of implantable wireless bidirectional SOC for biomedical applications,” National Chung Cheng University, Oct. 2006.
[9] J. J. Sit and R. Sarpeshkar, “A low-power blocking-capacitor-free charge-balanced electrode-stimulator chip with less than 6 nA DC error for 1-mA full-scale stimulation,” IEEE Trans. Biomed. Circ. Syst., vol. 1, no. 3 , pp. 184-192, Sep. 2007.
[10] B. Razavi, “Design of analog CMOS integrated circuits,” New York: McGraw-Hill, 2001.
[11] C.C. ENZ and G.C. Temes, “Circuit techniques for reducing the effects of op-amp imperfections: autozeroing, correlated double sampling, and chopper stabilization,” Proc. IEEE, vol. 84, no. 11, pp. 1584-1614, Nov. 1996.
[12] J. H. Tun, “The design and implementation of fully-differential chopper-stabilized operational amplifier,” National Chi Nan University, Jul. 2004.
[13] D. A. Johns and K. Martin, “Analog integrated circuit design,” New York: John Wiley and Sons Inc., 1997.
[14] P. R. Gray, P. J. Hurst, S. H. Lewis, and R. G. Meyer, “Analysis and design of analog integrated circuits,” New York: John Wiley & Sons, Inc., 2001.
[15] T. M. Hollis, D. J. Comer, and D. T. Comer, “Optimization of MOS amplifier performance through channel length and inversion level selection,” IEEE Trans. Circ. Syst.-II: Express Briefs, vol. 52, no. 9, Sep. 2005.
[16] D. M. BINKLEY, B. J. BLALOCK, and J. M. ROCHELLE, “Optimizing drain current, inversion level, and channel length in analog CMOS design,” Proc. Analog Integrated Circuits and Signal, vol. 47, no. 2, pp. 137-163, May 2006.
[17] T. Denison, K. Consoer, W. Santa, A.-T. Avestruz, J. Cooley, and A. Kelly , “A 2 μW 100 nV/rtHz chopper-stabilized instrumentation amplifier for chronic measurement of neural field potentials,” IEEE J. Solid-State Circ., vol. 42, no. 12, pp. 2934-2945, Dec. 2007.
[18] C. C. Enz, E. A. Vittoz, and F. Krummenacher, “A CMOS chopper amplifier,” IEEE J. Solid-State Circ., vol. 22, no. 3, pp. 335-342, Jun. 1987.
[19] A. Bakker and J. Huijsing, “High-accuracy CMOS smart temperature sensors,” Boston: Kluwer Academic Publisher, 2000.
[20] C. Menolfi and Q. Huang, “A low-noise CMOS instrumentation amplifier for thermoelectric infrared detectors, ” IEEE J. Solid-State Circ., vol. 32, no. 7, pp. 968-976, Jul. 1997.
[21] C. Menolfi and Q. Huang, “A fully integrated CMOS instrumentation amplifier with submicrovolt offset,” IEEE J. Solid-State Circ., vol. 34, no. 3, pp. 415-420, Mar. 1999.
[22] C. Menolfi and Q. Huang, “A chopper modulated instrumentation amplifier with first order low-pass filter and delayed modulation scheme,” Proc. ESSCIRC '99., pp. 54-57, Sep. 1999.
[23] B. Gosselin, A. E. Ayoub, and M. Sawan, “A low-power bioamplifier with a new active DC rejection scheme,” IEEE Intl. Symp. Circ. Syst., pp. 21-24, May 2006.
[24] B. Gosselin, M. Sawan, and C. Andrew Chapman, “A low-power integrated bioamplifier with active low-frequency suppression,” IEEE Trans. Biomed. Circ. Syst., vol. 1, no. 3 , pp. 184-192, Sep. 2007.
[25] H. Alzaher and M. Ismail, “A CMOS fully balanced differential difference amplifier and its applications,” IEEE Trans. Circ. Syst.-II: Analog and Digital Signal Processing, vol. 48, no. 6, Jun. 2001.
[26] P. E. Allen and D. R. Holberg, “CMOS analog circuit design,” New York: Oxford University Press, 2002.
[27] M. M. Zhang and P. J. Hurst, “Effect of nonlinearity in the CMFB circuit that uses the differential-difference amplifier,” IEEE Intl. Symp. Circ. Syst., pp. 1390-1393, May 2006.
[28] R. Schaumann and M. E. Van Valkenburg, “Design of analog filters,” Oxford University Press, 2001.
[29] S. Y. Ho, “A continuous-time receive filter design with automatic gain control for DVB-T/H receiver,” Nation Central University, Oct. 2007.
[30] R. H. Olsson III, M. N. Gulari, and K. D. Wise, “A fully-integrated bandpass amplifier for extracellular neural recording,” IEEE EMBS, pp. 165-168, Mar. 2003.
[31] R. R. Harrison and C. Charles, “A low-power low-noise CMOS amplifier for neural recording applications,” IEEE J. Solid-State Circ., vol. 38, no. 6, pp. 958-965, Jun. 2003.
[32] R. J. Baker, “CMOS circuit design, layout, and simulation,” NJ: Wiley IEEE Press, 2005.
[33] A. Tajalli, Y. Leblebici , and E. J. Brauer, “Implementing ultra-high-value floating tunable CMOS resistors,” Electronics Letters, vol. 44 no. 5, Feb. 2008.
[34] M. S. J. Steyaert, W. M. C. Sansen, and C. Zhongyuan, “A micropower low-noise monolithic instrumentation amplifier for medical purposes,” IEEE J. Solid-State Circ., vol. sc-22, no. 6, pp. 1163-1168, Dec. 1987.
[35] http://www.physionet.org/physiobank/database/tremordb/.
[36] Y. Hu and M. Sawan, “CMOS front-end amplifier dedicated to monitor very low amplitudesignal from implantable sensors,” Proc. Analog Integrated Circuits and Signal Processing, vol. 33, no. 1, pp. 29-41,Oct. 2002.
[37] T. Lim and Y. P. Xu, “A low-power and low-offset CMOS front-end amplifier for portable EEG acquisition system,” IEEE Inte. Work. Biom. Circ. Syst., pp. 17-20, Dec. 2004.
[38] A. Uranga, X. Navarro, and N. Barniol, “Integrated CMOS amplifier for ENG signal recording,” IEEE Trans. Biomed. Eng., vol. 51, no. 12, pp. 2188-2194, Dec. 2004.
[39] K. A. Ng and P. K. Chan, “A CMOS analog front-end IC for portable EEG/ECG monitoring applications,” IEEE Trans. Circ. Syst.-I: vol. 52, no. 11, Nov. 2005.
[40] P. K. Chan, G. A. Hanasusanto, H. B. Tan, and V. K. S. Ong, “A micropower CMOS amplifier for portable surface EMG recording, ” IEEE Asia Pacific Conf. Cir. Syst., pp. 490-493, Dec. 2006.
[41] T. Denison, K. Consoer, W. Santa, A.-T. Avestruz, J. Cooley, and A. Kelly, “A 2uW 100nv/rtHz chopper-stabilized instrumentation amplifier for chronic measurement of neural field potentials,” IEEE J. Solid-State Circ., vol. 42, no. 12, pp. 2934-2945, Dec. 2007.
指導教授 薛木添(Muh-Tian Shiue) 審核日期 2009-1-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明