參考文獻 |
[1] J. G. Webster, “Medical instrumentation application and design,” Canada: John Wiley & Sons, Inc., 1998.
[2] M. F. Bear, B. W. Connors, and M. A. Paradiso, “Neuroscience: exploring the brain,” Baltimore: Lippincott Williams & Williams Inc., 1996.
[3] K.D. Wise, “A multi-channel microprobe for biopotential recording,” Ph.D. dissertation, Stanford, CA, 1969.
[4] C. T. Charles, “Electrical components for a fully implantable neural recording system,” The University of Utah, Aug. 2003.
[5] M. Dagtekin, “A chopper modulated amplifier system design for in vitro neural recording,” North Carolina State University, 2006.
[6] J. W. Lu, “Analysis and design of electrical stimulator and impedance measurement circuitry for visual prostheses,” Nation Central University, Jul. 2008.
[7] A. B. Schwartz, X. T. Cui, D. J. Weber, and D. W. Moran, “Brain controlled interfaces: movement restoration with neural prosthetics,” Neuron, vol. 52, pp. 205–220, 2006.
[8] S. C. Lee, “Design of implantable wireless bidirectional SOC for biomedical applications,” National Chung Cheng University, Oct. 2006.
[9] J. J. Sit and R. Sarpeshkar, “A low-power blocking-capacitor-free charge-balanced electrode-stimulator chip with less than 6 nA DC error for 1-mA full-scale stimulation,” IEEE Trans. Biomed. Circ. Syst., vol. 1, no. 3 , pp. 184-192, Sep. 2007.
[10] B. Razavi, “Design of analog CMOS integrated circuits,” New York: McGraw-Hill, 2001.
[11] C.C. ENZ and G.C. Temes, “Circuit techniques for reducing the effects of op-amp imperfections: autozeroing, correlated double sampling, and chopper stabilization,” Proc. IEEE, vol. 84, no. 11, pp. 1584-1614, Nov. 1996.
[12] J. H. Tun, “The design and implementation of fully-differential chopper-stabilized operational amplifier,” National Chi Nan University, Jul. 2004.
[13] D. A. Johns and K. Martin, “Analog integrated circuit design,” New York: John Wiley and Sons Inc., 1997.
[14] P. R. Gray, P. J. Hurst, S. H. Lewis, and R. G. Meyer, “Analysis and design of analog integrated circuits,” New York: John Wiley & Sons, Inc., 2001.
[15] T. M. Hollis, D. J. Comer, and D. T. Comer, “Optimization of MOS amplifier performance through channel length and inversion level selection,” IEEE Trans. Circ. Syst.-II: Express Briefs, vol. 52, no. 9, Sep. 2005.
[16] D. M. BINKLEY, B. J. BLALOCK, and J. M. ROCHELLE, “Optimizing drain current, inversion level, and channel length in analog CMOS design,” Proc. Analog Integrated Circuits and Signal, vol. 47, no. 2, pp. 137-163, May 2006.
[17] T. Denison, K. Consoer, W. Santa, A.-T. Avestruz, J. Cooley, and A. Kelly , “A 2 μW 100 nV/rtHz chopper-stabilized instrumentation amplifier for chronic measurement of neural field potentials,” IEEE J. Solid-State Circ., vol. 42, no. 12, pp. 2934-2945, Dec. 2007.
[18] C. C. Enz, E. A. Vittoz, and F. Krummenacher, “A CMOS chopper amplifier,” IEEE J. Solid-State Circ., vol. 22, no. 3, pp. 335-342, Jun. 1987.
[19] A. Bakker and J. Huijsing, “High-accuracy CMOS smart temperature sensors,” Boston: Kluwer Academic Publisher, 2000.
[20] C. Menolfi and Q. Huang, “A low-noise CMOS instrumentation amplifier for thermoelectric infrared detectors, ” IEEE J. Solid-State Circ., vol. 32, no. 7, pp. 968-976, Jul. 1997.
[21] C. Menolfi and Q. Huang, “A fully integrated CMOS instrumentation amplifier with submicrovolt offset,” IEEE J. Solid-State Circ., vol. 34, no. 3, pp. 415-420, Mar. 1999.
[22] C. Menolfi and Q. Huang, “A chopper modulated instrumentation amplifier with first order low-pass filter and delayed modulation scheme,” Proc. ESSCIRC '99., pp. 54-57, Sep. 1999.
[23] B. Gosselin, A. E. Ayoub, and M. Sawan, “A low-power bioamplifier with a new active DC rejection scheme,” IEEE Intl. Symp. Circ. Syst., pp. 21-24, May 2006.
[24] B. Gosselin, M. Sawan, and C. Andrew Chapman, “A low-power integrated bioamplifier with active low-frequency suppression,” IEEE Trans. Biomed. Circ. Syst., vol. 1, no. 3 , pp. 184-192, Sep. 2007.
[25] H. Alzaher and M. Ismail, “A CMOS fully balanced differential difference amplifier and its applications,” IEEE Trans. Circ. Syst.-II: Analog and Digital Signal Processing, vol. 48, no. 6, Jun. 2001.
[26] P. E. Allen and D. R. Holberg, “CMOS analog circuit design,” New York: Oxford University Press, 2002.
[27] M. M. Zhang and P. J. Hurst, “Effect of nonlinearity in the CMFB circuit that uses the differential-difference amplifier,” IEEE Intl. Symp. Circ. Syst., pp. 1390-1393, May 2006.
[28] R. Schaumann and M. E. Van Valkenburg, “Design of analog filters,” Oxford University Press, 2001.
[29] S. Y. Ho, “A continuous-time receive filter design with automatic gain control for DVB-T/H receiver,” Nation Central University, Oct. 2007.
[30] R. H. Olsson III, M. N. Gulari, and K. D. Wise, “A fully-integrated bandpass amplifier for extracellular neural recording,” IEEE EMBS, pp. 165-168, Mar. 2003.
[31] R. R. Harrison and C. Charles, “A low-power low-noise CMOS amplifier for neural recording applications,” IEEE J. Solid-State Circ., vol. 38, no. 6, pp. 958-965, Jun. 2003.
[32] R. J. Baker, “CMOS circuit design, layout, and simulation,” NJ: Wiley IEEE Press, 2005.
[33] A. Tajalli, Y. Leblebici , and E. J. Brauer, “Implementing ultra-high-value floating tunable CMOS resistors,” Electronics Letters, vol. 44 no. 5, Feb. 2008.
[34] M. S. J. Steyaert, W. M. C. Sansen, and C. Zhongyuan, “A micropower low-noise monolithic instrumentation amplifier for medical purposes,” IEEE J. Solid-State Circ., vol. sc-22, no. 6, pp. 1163-1168, Dec. 1987.
[35] http://www.physionet.org/physiobank/database/tremordb/.
[36] Y. Hu and M. Sawan, “CMOS front-end amplifier dedicated to monitor very low amplitudesignal from implantable sensors,” Proc. Analog Integrated Circuits and Signal Processing, vol. 33, no. 1, pp. 29-41,Oct. 2002.
[37] T. Lim and Y. P. Xu, “A low-power and low-offset CMOS front-end amplifier for portable EEG acquisition system,” IEEE Inte. Work. Biom. Circ. Syst., pp. 17-20, Dec. 2004.
[38] A. Uranga, X. Navarro, and N. Barniol, “Integrated CMOS amplifier for ENG signal recording,” IEEE Trans. Biomed. Eng., vol. 51, no. 12, pp. 2188-2194, Dec. 2004.
[39] K. A. Ng and P. K. Chan, “A CMOS analog front-end IC for portable EEG/ECG monitoring applications,” IEEE Trans. Circ. Syst.-I: vol. 52, no. 11, Nov. 2005.
[40] P. K. Chan, G. A. Hanasusanto, H. B. Tan, and V. K. S. Ong, “A micropower CMOS amplifier for portable surface EMG recording, ” IEEE Asia Pacific Conf. Cir. Syst., pp. 490-493, Dec. 2006.
[41] T. Denison, K. Consoer, W. Santa, A.-T. Avestruz, J. Cooley, and A. Kelly, “A 2uW 100nv/rtHz chopper-stabilized instrumentation amplifier for chronic measurement of neural field potentials,” IEEE J. Solid-State Circ., vol. 42, no. 12, pp. 2934-2945, Dec. 2007.
|