博碩士論文 955201114 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:3.135.202.224
姓名 張程毓(Chen-Yu Chang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 異質接面雙極性電晶體之特性探討與溫度補償電路設計
(A Study on Characteristics of Heterojunction Bipolar Transistor and design circuit for temperature compensation)
相關論文
★ 增強型異質結構高速移導率電晶體大信號模型之建立及其在微波放大器之應用★ 空乏型暨增強型Metamorphic HEMT之製作與研究
★ 增強型與空乏型砷化鋁鎵/砷化銦鎵假晶格高電子遷移率電晶體: 元件特性、模型與電路應用★ 氧化鋁基板上微波功率放大器之研製
★ 氧化鋁基板上積體化微波降頻器電路之研製★ 順序特徵結構設計研究及其應用在特徵模子去耦合與最小特徵值靈敏度
★ 順序特徵結構設計研究及其應用在最大強健穩定度與最小迴授增益★ LDMOS功率電晶體元件設計、特性分析及其模型之建立
★ CMOS無線通訊接收端模組之設計與實現★ 積體化微波被動元件之研製與2.4GHz射頻電路設計
★ 異質結構高速移導率電晶體模擬、製作與大訊號模型之建立★ 氧化鋁基板微波電路積體化之2.4 GHz接收端模組研製
★ 氧化鋁基板上積體化被動元件及其微波電路設計與研製★ 二維至三維微波被動元件與射頻電路之設計與研製
★ CMOS射頻無線通訊發射端電路設計★ 次微米金氧半場效電晶體高頻大訊號模型及應用於微波積體電路之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 因為異質接面電晶體 (HBT) 擁有高電流處理能力、高截止頻率與高最大震盪頻率,故其被廣泛地應用在微波電路上。其中,對設計功率放大器者而言,最大的阻礙即是自發熱效應的問題,而自發熱效應將減低元件之特性,嚴重的話將產生熱跑脫現象(thermal runaway),進而將元件燒毀。通常使用射極分佈電指的結構和外接壓艙電阻以穩定熱效應對元件的影響。所以本報告將針對兩種方向去加以討論和分析: (1) 在相同的射極總面積與壓艙電阻下,不同的射極長度對熱的影響。(2) 在相同的異質接面雙極性電晶體的大小下,不同的壓艙電阻值對熱的影響。
本論文中,亦利用一套簡單萃取最佳化壓艙電阻之理論與方法,並成功的利用此最佳化壓艙電阻值模擬出最佳化後的I-V曲線圖。
此外,本論文中亦提出一溫度補償電路,其應用在電路上將使得其功率元件特性變好。而此電路當模擬在操作環境溫度變化範圍在-450C~850C時亦或是偏壓電路供給電壓變動範圍在2.6V~3.2V,其模擬之結果皆可達到增益固定之功能。
摘要(英) Because Heterojunction Bipolar Transistors has the characteristics of high current handling capability, high cutoff frequency and high maximum frequency for oscillation, HBT have been widely accepted by the microwave engineering as an excellent candidate for many high-frequencies applications. A major obstacle for the employment of HBT for high power and high frequency applications is self-heating effect, which is even more serious with the downscaling of the chip .The self-heating effects degenerate the electrical characteristics of transistors leading to DC bias shifting and the thermal runaway. To avoid the thermal runaway phenomenon, we usually use multi-finger or ballastinging resistor. We want to discuss in view of two kinds of sides: (1) same device emitter area 、ballastinging resistor and different emitter length to thermal stable (2) same device area and different ballastinging resistor to thermal stable.
We induce the ballastinginging resistor in this thesis. The optimized ballastinginging resistor which built in the HBT in series can eliminate the thermal instability and improve RF performance.
Therefore, we design the temperature-compensation bias circuits to further improve the performance with a wide temperature range operating from -450C to 850C. Additionally, the designed circuits also can achieve the low variations for RF characteristic under the bias voltage ranging from 2.6V to 3.2V.
關鍵字(中) ★ 異質接面雙極性電晶體
★ 溫度補償
關鍵字(英) ★ Heterojunction Bipolar Transistor
★ Temperature compensation
論文目次 第一章 導論......................................................................................... 1
1-1 研究動機............................................................................ 1
1-2 論文架構............................................................................ 2
第二章 射極長度、壓艙電阻(Ballastinging Resistor)對異質接面電晶體之研究與探討.................................................................5
2-1 簡介...................................................................................... 5
2-2 異質接面電晶體之射極長度對熱穩定的探討.................. 6
2-2-1 簡介………………………………………….……6
2-2-2 元件規格…………………………………….……6
2-2-3 直流量測與分析…………………………….……7
2-2-4 微波功率量測與探討………………..…….……10
2-2-5 元件之溫度特性...................................................12
2-2-5-1 熱電阻萃取..........................................12
2-2-5-2 溫度對直流特性分析..........................13
2-2-5-3 溫度對頻率響應分析..........................14
2-2-5-4 溫度對功率分析..................................15
2-2-6 結論………..…………...….…….……………...18
2-3 異質接面電晶體之壓艙電阻對熱穩定的探討...............18
2-3-1 元件規格...........................................................18
2-3-2 直流量測與分析...............................................19
2-3-3 微波功率量測與探討.......................................22
2-3-4 元件之溫度特性...............................................25
2-3-4-1 熱電阻萃取.........................................25
2-3-4-2 溫度對直流特性分析.........................29
2-3-4-3 溫度對頻率響應分析.........................29
2-3-4-4 溫度對功率分析.................................31
2-4 壓艙電阻最佳化...............................................................32
2-4-1 壓艙電阻最佳化之理論...................................33
2-4-2 計算壓艙電阻最佳化之參數意義...................34
2-4-3 壓艙電阻最佳化值...........................................35
2-5 結論..................................................................................35
第三章 異質接面電晶體VBIC模型建立與最佳化壓艙電阻模擬.36
3-1 簡介..................................................................................36
3-2 異質接面電晶體小訊號模型建立..................................36
3-2-1 寄生電感和接觸電阻之萃取...........................38
3-2-2 寄生電容之萃取...............................................41
3-2-3 內部參數之萃取...............................................42
3-2-4 小訊號模擬結果...............................................51
3-3 VBIC 模型建立...............................................................52
3-3-1 VBIC模型介紹................................................ 52
3-3-2 使用儀器...........................................................55
3-3-3 寄生電阻量測與萃取.......................................55
3-3-3-1 射極寄生電阻之萃取....................56
3-3-3-2 集極寄生電阻之萃取....................57
3-3-3-3 基極寄生電阻之萃取....................58
3-3-4 順向與逆向 Gummel plot 參數萃取..............59
3-3-5 類飽和效應 ( quasi-saturation ) 萃取……….65
3-3-6 自我加熱效應 ( self-heating ) 萃取................67
3-3-7 接面電容萃取...................................................68
3-3-8 傳輸時間參數萃取...........................................70
3-3-9 微波功率特性之驗證.......................................72
3-4 最佳化壓艙電阻模擬.......................................................74
3-5 結論...................................................................................84
第四章 溫度補償電路設計..................................................................85
4-1 簡介..................................................................................85
4-2 偏壓原理..........................................................................86
4-3 溫度補償電路一..............................................................87
4-3-1 偏壓電路一之架構...........................................87
4-3-2 偏壓電路一之模擬結果...................................89
4-3-3 偏壓電路一之結果與討論...............................99
4-4 溫度補償電路二..............................................................99
4-4-1 偏壓電路二之架構...........................................99
4-4-2 偏壓電路二之模擬結果.................................100
4-4-3 偏壓電路二之結果與討論.............................110
第五章 結論......................................................................................111
參考文獻................................................................................................113
參考文獻 [1] W. Shockley and H. Kroemer,”Theory of Wide-gap Emitter for
Transistors,” IRE, 1957, Vol. 45 , pp. 1535.
[2] Willam Liu , “Handbook of III-V Heterojunction Bipolar Transistor
,” John Wiley & Sons, 1998 , pp. 640-641.
[3] Y. Zhu, J. K. Twynam, M. Yagura, M. Hasegawa, T. Hasegawa, Y.
Eguchi, Y. Amano, E. Suematsu, “Self-Heating Effect Compensation
In HBTs and Its Analysis and Simulation ,” IEEE Trans. Electron
Devices,2001,Vol. 48,pp.2640-2645.
[4] Donald A. Neamen,”Semiconductor Physics and Decice,” McGraw-
Hill,Third Edition,2003,pp. 218-223.
[5] Susheela Narasimhan and Joseph Majdalani, “ Characterization of
Compact Heat Sink Models in Natural Convection,” IEEE
Transactractions on Compoenents and Packaging Technologies,
Vol.25, No. 1, March 2002.
[6] C. D. Patel and C. Belady, ” Modeling and Mctrology in High
Performance Heat Sink Design,” Palo Alto, CA: Hewlett Packard
Laboratories, 1997.
[7] Susheela Narasimhan and Joseph Majdalani, “ Characterization of
compact Heat Sink Models in Natural Convection,”
IEEE Transactractions on Compoenents and Packaging
Technologies, Vol. 25, No. 1, March 2002.
[8] Guang-bo Gao, M. Selim Unlu, Hadis Morkog, David L.Blackbum,”
Emitter Ballastinginging Resistor Design for , and Current
Handling Capability of AlGaAs/GaAs Power Heterojunction
Bipolar Transistors,” IEEE TRANSACTIONS ON ELECTRON
DEVICES, VOL. 38, NO. 2, FEBRUARY 1991.
[9] W. Liu, A. Khatibzadeh, J. Sweder, and H. –F. Chau, “The Use of
Base Ballastinginging to Prevent the Collapse of Current Gain
in AlGaAs/GaAs Heterojunction Bipolar Transistors, ”IEEE Tran.
Electron Devices, Vol. 43, No. 2, 1996, pp. 280.
[10] Jin Dong-Yue *, Zhang Wan-Rong, Qiu Jian-Jun, Gao Pan
,“Ballastinginging Resistor Optimum for the Self-Heating
Effect,”
[11] Steve P. Marsh , ”Direct extraction technique to drive the junction
temperature of HBT’s under high self-heating bias conditions,”
IEEE Transactions on Electron Devices , Vol. 47 ,No. 2, February
2000.
[12] Dale E. Dawson , Aditya K. Gupta , “CW Measurement of HBT
thermal resistance, ” IEEE Transactions on Electron Devices ,Vol.
39 ,No. 10, October 1992.
[13] C. C. McAndrew et al.,“VBIC95 ,the vertical bipolar inter-company
model,” IEEE J. Solid-State Circuit, 1996, Vol 31, pp 1476-1483.
[14] W. Liu ,1998,Handbook of III-V Heterojunction Bipolar transistors.
New York: Wiley.
[15] F. Ali and A. Gupta , “HEMTs and HBTs : Devices , Fabrication ,
and Circuits,” Artech House , Boston.
[16] Jin Dong-yue , Zhang Wan-rong , Qiu Jian-jun , Gao Pan , Xiao
Ying , “A Simple Method to Optimize the Ballastinginging
Resistor of RF Power HBT ” , College of Electronic Information
and Control Engineering , Beijing University of Technology .
[17] Sami Bousnina , “Direct Parameter-Extraction Method for HBT
Small-Signal Model” , IEEE Transactions on Microwave Theory
and Techniques , Vol. 50 , No. 2, February 2002.
[18] Louay Degachi and Fadhel M. Ghannouchi , “Systematic and
Rigorous Extraction Method of HBT Small-Signal Model
Parameters” , IEEE Transactions on Microwave Theory and Tech-
niques , Vol. 54 ,No. 2, February 2006.
[19] 王雅萱,”異質接面雙極性電晶體 VBIC 模型建立及其在射頻
電路之應用”, 碩士論文 , 國立中央大學 , 2003 .
[20] Xiaochong Cao , Mcmacken, J , Stiles, K , Layman, P , Liou, J.J ,
Oritz-Conde , A. , Moinian, S. , “Comparison of the new VBIC
And conventional Gummel-Poon bipolar transistor models Electron
Devices ,” IEEE Transactions on , Vol. 47 , Issue 2, February 2000.
[21] Cherepko, S.V , Hwang, J.C.M , “VBIC model applicability and
Extraction procedure for InGaP/GaAs HBT,” Microwave Conference
, 2001. APMC 2001. 2001 Asia-Pacific , 2001.
[22] Cao, X , McMacken, J , Stiles, K , Layman, P , Liou, J.J , Sun,
A ,Moinian, S , “Parameter extraction and optimization for
New industry standard VBIC model,” Advanced Semiconductor
Devices and Microsystems , 1998. ASDAM ’98. Second
International Conference on , 5-7 Oct 1998.
[23] “ High-Frequency Model Tutorial, ” Vol.1. ICCAP manual.
[24] Tirdad Sowlati and Sifen Luo,“Bias Boosting Technique for a 1.9GHz
Class AB RF Amplifier”.
[25] R. H. Winkler, “Thermal Properties of High-Power Transistors,”
IEEE Transactions Electron Devices , Vol. 14 , 1967, p. 260.
[26] R. P.Arnold and D.Zoroglu,“A Quantitative Study of Emitter
Ballastinginging ,” IEEE Transactions Electron Devices , Vol.
21 , 1974, p. 385.
[27] W. Liu er al., “Current Gain Collapse in Microwave Multi-finger
HBT Operated at Very High Power Densities, ” IEEE Transactions
Electron Devices , Vol. 40 , 1917, p. 1993.
[28] W. Liu and A. Khatibzafeh. “ The Collapse of Current Gain in Multi-
Finger HBT : Its Substrate Temperature Dependence ,Instability
Criteria and Modeling , ” IEEE Transactions Electron Devices ,
Vol. 41 , 1994, p. 1698.
[29] W. Liu et al., “ The Use of Base Ballastinginging to Prevent the Col-
Lapse of Current Gain in AlGaAs/GaAs Power HBT,” IEEE Transactio
-ns Electron Devices , Vol. 43 , 1996, p. 245.
[30] G. B. Gao, Thermal Design Studies of High-Power HBT, IEEE
Transactions Electron Devices , Vol. 36 , 1989, p.854.
[31] J. Jang et al., “Characterization of RF Power BJT and Improvement
Of Thermal Stability with Nonlinear Base Ballastinginging ,”
IEEE J. Solid State Circuits , Vol. 33 , 1998, p.1428.
[32] Stephen Maas , “Ballastinginging HBTs For Wireless Power
Amplifier Operation ,” IEEE.
[33] Y. S. Noh and C.S. Park , “Linearized InGaP/GaAs HBT MMIC Power
Amplifier with Active Bias Circuit,” IEEE.
指導教授 詹益仁 審核日期 2008-7-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明