博碩士論文 955201119 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:18.224.214.215
姓名 洪富城(Fu-Cheng Hung)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 採用累增崩潰異質接面光電晶體和衝渡二極體兩種元件來改善增益頻寬積的特性
(The Improvement of Gain-Bandwidth Product Performance by Using the Structures of Avalanche Heterojunction Phototransistor and IMPATT-Photodiode)
相關論文
★ 氮化鎵串接式綠光發光二極體在超高溫(200 ℃)操作的高速表現之和其內部之載子動力學★ 32Gbit/s 低耗能 850nm InAlGaAs 應變量子井面射型雷射
★ 具有大面積且在高靈敏度、低暗電流操作下具有頻寬增強效應的10 Gbit/sec平面式 InAlAs 累增崩潰光二極體★ 應用串接式技術達到超高飽和電流-頻寬乘積(7500mA-GHz,75mA,100GHz)的近彈道傳輸光偵測器
★ 利用鋅擴散方式在半絕緣(GaAs)基板上製作可室溫操作、高速且低漏電流的InAs光檢測器★ 應用超寬頻光子傳送混波器達到遠距分佈及調變的20Gbit/s無誤碼無線振幅偏移調變資料傳輸於W-頻帶
★ 具有同時高速資料傳輸及產生直流電功率的 砷化鎵/磷化銦鎵的雷射功率轉換器★ 超高速(>1Gb/s)可見光發光二極體應用於塑膠光纖通訊及內部載子動力學的研究
★ 具有超低耗能,傳輸資料量比值在850nm波段超高速(40 Gb/s)面射型雷射★ 超高速(~300GHz)光偵測器的製造與其在毫米波生物晶片上的應用
★ 超高速覆晶式(>300GHz)高功率(~mW)光偵測器製作與量測★ 具有單空間模態,低發散角,高功率的鋅擴散二維850nm面射型雷射陣列
★ 應用於850到1550 nm波長光連結且 具有高速,高效率和大面積的p-i-n光偵測器★ 應用於中距離(2km)至短距離光連結知單模態、高速、高輸出光功率的850nm波段面射型雷射
★ 應用在光連接具有高可靠度高速(>25Gbit/sec) 850光波段的垂直共振腔雷射★ 具有高可靠度/高功率輸出與直流到次兆赫茲 (≧300GHz)操作頻寬的超高速光偵測器和其覆晶式封裝設計與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在本論文研究中,我們提出一個分離式吸收、電荷、增益之異質接面光電晶體。當元件在不犧牲增益特性之下,在磊晶時插入倍增層InAlAs,操作在近崩潰區時,可以大大的減少電子在基-射接面被困住的時間,同時又可產生高輸出頻寬。增益輸出主要是由光導電體和崩潰兩個機制增益(gain)在交互作用,而不用操作高於30 V以上的逆向偏壓,又可得到大於104高增益。元件操作逆向偏壓6 V時,可達到高輸出頻寬(1.6 GHz)以及非常極大高增益頻寬積(90 THz)
第二,我們又提出了以一個標準的矽基板做成垂直入射的衝渡二體(IMPATT-PD)且操作在830 nm波段有著高速的表現。藉由頻寬共振的效應來改善傳統Avalanch Photodoide(APD)增益頻寬積互相抵換(Trade-off)的問題和矽基板吸光所產生的擴散電流。根據我們元件的模擬和量測結果,與傳統的衝渡二極體非常相似,當逆向偏壓加大,共振頻率也隨著變大。而在不使用Silicon-on-Insulator(SOI)這個昂貴的技術且增益為一的時候外部效率是60 %,可以達到頻寬為(30 GHz)的超高增益頻寬積(690 GHz),同時通過標準規格OC-192,清楚的看到在10 Gbit/s眼圖有開。
摘要(英) In this thesis, we demonstrate a high-performance heterojunction phototransistor (HPT): separate-absorption-charge-multiplication HPT (SACM-HPT). The incorporation of an In0.52Al0.48As based multiplication layer in the In0.53Ga0.47As based collector layer of our HPT allows for a great shortening of the trapping time (~ns to ~30 ps) of electrons at the base-emitter junction under near avalanche operation, without sacrificing the gain performance. The interaction between the photoconductive gain and avalanche gain means that it is not necessary to use high bias voltages (>30 V) in our device to attain high-gain (>1×104 ) performance. With this device design, we can achieve an extremely high (90THz) gain-bandwidth product (1.6GHz, 5.5×104 ) under a 6 V bias.
Second, we demonstrate a high-speed Si/SiGe based vertical-illuminated Impact Ionization Avalanche Transit Time Photodiode (IMPATT-PD) on the standard Si substrate operating in the 830nm wavelength regime. The studied andwidth-enhancement (resonant) effect can greatly release the trade-off between gain and bandwidth performance of a traditional APD and screen the slow diffusion current from Si substrate. According to our modeling and measurement results, the extracted internal resonant frequency significantly increases with the reverse leakage current (bias voltage), which is similar to the behavior of a traditional IMPATT diode. By properly choosing the bias voltage, a wide 3-dB bandwidth (30GHz), ultra-high gain-bandwidth product (690GHz) with a 60% external efficiency at unit gain, and a clear eye-opening at 10Gbit/sec, which can pass the OC-192 eye masks, can be achieved simultaneously in our device without using costly silicon-on-insulator (SOI) substrate.
關鍵字(中) ★ 異質接面崩潰光電晶體
★ 累增崩潰二極體
關鍵字(英) ★ Avalanche Heterojunction Phototransistor
★ Avalan
論文目次 摘要 I
ABSTRACT II
致謝 IV
目錄 V
圖目錄 VIII
表目錄 XIII
第一章 導論 1
1-1 光纖通訊的歷史 1
1-2 光纖通訊的應用 4
1-3 論文架構 6
第二章 分離式吸收、電荷、累增之磷化銦異質接面光電晶體的設計原理、製程步驟和量測結果 7
2-1 元件應用 7
2-2 光電晶體基本原理 8
2-3 傳統的光導電體 10
2-4 傳統的雪崩光二極體 11
2-5 分離式吸收、電荷、累增之磷化銦異質接面光電晶體 13
2-5-1 磊晶介紹 13
2-5-2 設計原理 14
2-6 製程步驟 16
2-7 量測結果與討論 23
2-7-1 光波示波器量測系統 23
2-7-2 光電流與增益量測結果 23
2-7-3 頻寬量測結果 25
第三章 分離式吸收、傳輸、電荷、累增之矽鍺雪崩光二極體的設計原理、製程步驟和量測結果 28
3-1 研究背景 28
3-2 元件應用 30
3-3 光二極體基本原理 31
3-4 光二極體的結構分類 33
3-4-1 磊晶結構 33
3-4-2 幾何結構 33
3-5 傳統的PIN光二極體 36
3-6 傳統的矽基底雪崩光二極體 39
3-7 分離式吸收、傳輸、電荷、增益之矽鍺雪崩光二極體 43
3-7-1 磊晶介紹 43
3-7-2 如何消除低頻3dB頻寬衰減而不使用SOI 技術 46
3-7-3 降低因元件操作在崩潰區所產生的3dB頻寬衰減 47
3-8 製程步驟 50
3-9 量測結果與討論 58
3-9-1 光波網路分析儀(光網儀)和眼圖量測系統 58
3-9-2 光電流與光響應度量測結果 59
3-9-3 頻寬量測結果 61
3-9-4 眼圖量測結果 66
第四章 結論 69
參考文獻 70
參考文獻 [1]http://www.oki.com/en/press/2002/z02059e.htm
[2]http://www.mfa-optics.com/dor.htm
[3]http://www.soon-link.com.tw/html/index.htm
[4]蘇亭林,“矽鍺光電晶體與砷化鎵光電晶體之設計與特性分析”碩士論文, 國立中央大學, 民國93年
[5]M.N. Abedin, T. F. Refaat, O. V. Sulima, and U. N. Singh, “AlGaAsSb-InGaAsSb HPTs With High Optical Gain and Wide Dynamic Range,” IEEE Trans. on Electron Devices, vol. 51, pp. 2013-2018, Dec., 2004.
[6]H. Dejun, L. Guohui, Y.-F. Zhang, and E.-J. Zhu, “Ultrahigh-Sensitive AlGaAs-GaAs Punchthrough Heterojunction Phototransistor,” IEEE Photon. Tech. Lett., vol. 9, 1391-1393, Oct., 1997.
[7]S. Chandrasekhar, M. K. Hoppe, A. G. Dentai, C. H. Joyner, and G. J. Qua, “Deotransistor with a Base Terminal,” IEEE Electron Device Lett., vol. 12, pp. 550-552, Oct. 1991.
[8]Donald A. Neamen “Semiconductor physics & Device Basic Principle” third edition, 2002.
[9]Brian F. Aull, Andrew H. Loomis, Douglas J. Young, Richard M. Heinrichs, Bradley J. Felton, Peter J. Daniels, and Deborah J. Landers
[10]H. Kosaka, A. Tomita, Y. Nambu, T. Kimura and K. Nakamura, “Single-photon interference experimentover 100 km for quantum cryptography system using balanced gated-modephoton detector,” IEEE Elec. Lett., vol. 39, pp. 1199-1201, No. 16, 7th August (2003)
[11]S. O. Kasap, Optoelectronics and photonics: principles and practices, prentice Hall, 2001
[12]Andrew S. Huntington*, Madison A. Compton, George M. Williams Voxtel Inc., 12725 SW Millikan Way, Suite 230, Beaverton, OR, USA 97005-1782
[13]J. C. Campbell, S. Demiguel, F. Ma, A. Beck, X. Guo, S. Wang, X. Zheng, X. Li, J. D. Beck, M. A. Kinch, A. Huntington, L. A. Coldren, J. Decobert, and N. Tscherptner, “Recent Advances in Avalanche Photodiodes,” IEEE J. of Sel. Topics in Quantum Electronics, vol. 10, pp. 777-787, July/Aug., 2004.
[14]R. Kuchibhotla, J. C. Campbell, C. Tsai, “InP/InGaAsP/InGaAs SAGM Avalanche Photodiode With Delta-Doped Multiplication Region,” IEEE Electron Lett., vol. 27, pp. 1361-1363, July, 1991
[15]B. F. Levine, R. N. Sacks, J. Ko, M. Jazwiecki, J. A. Valdmanis, D.Gunther, and J. H. Meier, “A New Planar InGaAs-InAlAs Avalanche Photodiode,” IEEE Photon. Tech. Lett., vol. 15, 1898-1900, Sep., 2006.
[16]J. C. Campbell, A. G. Dentai, G.-J. Qua, and J. F. Ferguson, “Avalanche InP/InGaAs Heterojunction Phototransistor,” IEEE J. of Quantum Electronics, vol. QE-19, pp. 1134-1138, June, 1983.
[17]李宗儒,“以矽鍺為材料,用於850nm 短距光纖通訊超高增益頻寬積(428GHz)的累增崩潰光二極體”碩士論文, 國立中央大學, 民國96年
[18]H. Nie, K. A. Anselm, C. Lenox, P. Yuan, C. Hu, G. Kinsey, B. G. Streetman, and J. C. Campbell, ”Resonant-Cavity Separate Absorption, Charge and Multiplication Avalanche Photodiodes With High-Speed and High Gain-Bandwidth Product,” IEEE Photon. Technol. Lett., vol. 10, pp. 409-411, 1998.
[19]Yoshio Mita, “Deep-Trench Vertical Si Photodiodes for Improved Efficiency and Crosstalk,” IEEE J. of Sel. Topics in Quantum Electronics, vol. 13, pp. 386-391, 2007.
[20]Steven J. Koester, ”Ge-on-SOI-Detector/Si-CMOS-Amplifier Receivers for High-Performance Optical-Communication Applications,” IEEE J.Lightwave Technol, vol. 25, pp. 46-57, 2007.
[21]M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Deneault, F. Gan, F. X. Kaertner, and T. M. Lyszczaurz, ”CMOS-Compatible All-Si High-Speed Waveguide Photodiodes With High Responsivity in Near-Infrared Communication Band,” IEEE Photon. Technol. Lett., vol. 19, pp. 152-154, 2007.
[22]Zhihong Huang, Ning Kong, Xiangyi Guo, Mingguo Liu, Ning Duan, Ariane L. Beck, Sanjay K. Banerjee, J. C. Campbell, “21-GHz-Bandwidth Germanium-on-Silicon Photodiode Using Thin SiGe Buffer Layers,” IEEE J. of Sel. Topics in Quantum Electronics, vol. 12, pp. 1450-1454, 2006.
[23]T. Yoshimura, and Y. Koyamada. “Analysis of Transmission Bandwidth characteristicsof SI-POF,” POF-2003 proceedings. P 119, September 15-17,2003 in Seattle.Available from Information Gatekeepers, Inc.
[24]K. Kato, “Ultrawide-Band/High-Frequency Photodetectors,” IEEE Trans. Microwave Theory Tech., vol. 47, pp. 1396-1398, 2000.
[25]M. Yang, “A High-Speed, High-Sensitivity Silicon Lateral Trench Photodetector,” IEEE Electron Device Lett., vol. 23, pp. 395-397, 2002.
[26]B. Yang, J. D. Schaub, S. M. Csutak, D. L. Rogers, J. C. Campbell, “10-Gb/s All-Silicon Optical Receiver,” IEEE Photon. Technol. Lett., vol. 15, pp. 745-747, 2003.
[27]G. Dehlinger, S. J. Koester, J. D. Schaub, J. O. Chu, Q. C. Ouyang, and A. Grill, “High-Speed Germanium-on-SOI Lateral PIN Photodiodes,” IEEE Electron Device Lett., vol. 16, pp. 2547-2549, 2004.
[28]J. Singh, “Electronic and Optoelectronic Properties of Semiconductor Structure,” CAMBRIDGE UNIVERSITY PRESS, 2003.
[29]C. Li, “Back-incident SiGe–Si multiple quantum-well resonant-cavity-enhanced photodetectors for 1.3-μm operation,” IEEE Photon. Technol. Lett., vol. 12, pp. 1373–1375, 2000.
[30]D. Buca, “Fast time response from Si–SiGe undulating layer Supperlatices,” Appl. Phys. Lett., vol. 80, pp. 4172–4174, 2002.
[31]E. Quinones, S. K. Ray, C. K. Liu, S. Baneriee, “Enhanced mobility PMOSFET’s using tensile-strained Si C layers,” IEEE Electron Device Lett., vol. 20, pp. 338–340, 1999.
[32]A. R. Hawkins, Ph. D. Thesis, University of California at Santa Barbara, 1998.
[33]H. Nie, K. A. Anselm, C. Lenox, P. Yuan, C. Hu, G. Kinsey, B. G. Streetman, J. C. Campbell, “Resonant-cavity separate absorption, charge and multiplication avalanche photodiodes with high-speed and high gain-bandwidth product,” IEEE Photon. Technol. Lett., vol. 10, pp. 409–411, 1998.
[34]Saˇsa Radovanovic´, Member, IEEE, “A 3-Gb/s Optical Detector in Standard CMOS for 850-nm Optical Communication,” IEEE Journal of Solid-State Circuits, vol. 40, no. 8, August 2005.
[35]S. M. Sze, Physics of Semiconductor Device, John Wiley & Sons, NewYork, 1981.
[36]M. Tschernitz, J. Freyer, H. Grothe, “GaAs Read-type IMPATT diodes for D-band,” IEEE Electron Lett., vol. 30, pp. 1070-1071, 1994
[37]Jin-Wei Shi, Yin-Hsin Liu, and Chee-Wee Liu, “Design and Analysis of Separate Absorption-Transport-Charge-Multiplication Traveling-Wave Avalanche Photodetectors,” IEEE J. Lightwave Technol, vol. 22, pp. 1583-1590, 2004
[38]G. S. Kinsey, J. C. Campbell, and A. G. Dentai, “Waveguide avalanche photodiode operating at 1.55μm with a gain-bandwidth product of 320GHz,” IEEE Photon. Technol. Lett., vol. 13, pp. 842–844, 2001
指導教授 許晉瑋(Jin-Wei Shi) 審核日期 2008-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明