博碩士論文 955201121 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:34 、訪客IP:18.227.10.112
姓名 黃丞宇(Cheng-yu Huang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 850nm光脈衝激發次兆赫波發射器
(Sub-THz Photonic-Transmitters by 850nm Wavelengths Optical Pulse Pumping)
相關論文
★ 氮化鎵串接式綠光發光二極體在超高溫(200 ℃)操作的高速表現之和其內部之載子動力學★ 32Gbit/s 低耗能 850nm InAlGaAs 應變量子井面射型雷射
★ 具有大面積且在高靈敏度、低暗電流操作下具有頻寬增強效應的10 Gbit/sec平面式 InAlAs 累增崩潰光二極體★ 應用串接式技術達到超高飽和電流-頻寬乘積(7500mA-GHz,75mA,100GHz)的近彈道傳輸光偵測器
★ 利用鋅擴散方式在半絕緣(GaAs)基板上製作可室溫操作、高速且低漏電流的InAs光檢測器★ 應用超寬頻光子傳送混波器達到遠距分佈及調變的20Gbit/s無誤碼無線振幅偏移調變資料傳輸於W-頻帶
★ 具有同時高速資料傳輸及產生直流電功率的 砷化鎵/磷化銦鎵的雷射功率轉換器★ 超高速(>1Gb/s)可見光發光二極體應用於塑膠光纖通訊及內部載子動力學的研究
★ 具有超低耗能,傳輸資料量比值在850nm波段超高速(40 Gb/s)面射型雷射★ 超高速(~300GHz)光偵測器的製造與其在毫米波生物晶片上的應用
★ 超高速覆晶式(>300GHz)高功率(~mW)光偵測器製作與量測★ 具有單空間模態,低發散角,高功率的鋅擴散二維850nm面射型雷射陣列
★ 應用於850到1550 nm波長光連結且 具有高速,高效率和大面積的p-i-n光偵測器★ 應用於中距離(2km)至短距離光連結知單模態、高速、高輸出光功率的850nm波段面射型雷射
★ 應用在光連接具有高可靠度高速(>25Gbit/sec) 850光波段的垂直共振腔雷射★ 具有高可靠度/高功率輸出與直流到次兆赫茲 (≧300GHz)操作頻寬的超高速光偵測器和其覆晶式封裝設計與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在本論文的研究中我們展示了兩個新穎的光電發射器,一個是利用低溫成長砷化鎵(LTG-GaAs)為基材的分離式傳輸複合光二極體(STR-PD) ,另一者是以砷化鎵/砷化鋁鎵(GaAs/AlGaAs)為基材的單載子傳輸光二極體(UTC-PD)。此兩種元件結合槽孔式的單極圓碟微波天線,其具有無需要整合在Si-lens的優點。藉由中心波長為800nm超快速飛秒光脈衝光訊號的激發下,我們的光電發射器可幅射出一個強而有力的次兆赫波脈衝訊號(最大功率20mW)和一個較寬的頻帶(100GHz到250GHz)。並由兆赫波時域光譜(TDS)系統量測並轉換成頻域訊號,此頻域訊號可應用在兆赫波資料連結系統內。而當元件操作在逆偏下,此光電發射器的峰值功率(峰值電場平方)隨著外加偏壓有顯著的變化,並經由訊號歸一化分析後,我們可以清楚的看到峰值功率與外加逆偏壓呈現一線性關係,此線性現象對於我們調制光次兆赫波的傳輸資料,有很大的益助。
摘要(英) In this paper, we demonstrated two novel photonic transmitters; one is composed of low-temperature-grown GaAs (LTG-GaAs) based separated-transport-recombination photodiode (STR-PD) and the other is GaAs/AlGaAs based Uni-traveling-carrier photodiode (UTC-PD). Both devices are integrated with broadband micromachined monopole antennas but without the integration with Si-lens. Under femto-second optical pulse illumination which the wavelength of around 800nm, the photonic-transmitter can radiate strong sub-THz pulses (20mW peak-power) with a wide bandwidth (100~250GHz). Such result was directly measured by a THz-TDS system, which could be used as a THz UWB data link system. The bias dependent high-peak-power performance of our device implies its application of photonic emitter and data modulator in photonic sub-THz UWB system.
關鍵字(中) ★ THz
★ 光發射器
★ 單極圓碟天線
★ 分離-傳輸-複合光二極體
★ 單載子傳輸光二極體
關鍵字(英) ★ photonic-transmitters
★ THz
論文目次 第一章 簡介 1
1-1 兆赫波之應用 1
1-2 兆赫波產生之方式 3
1-3論文架構 5
第二章 光檢測器原理 7
2-1光二極體介紹 7
2-2行波式光二極體原理與頻率限制 9
2-2-1行波式光二極體等效電路 9
2-2-2行波式光二極體頻寬限制 11
2-3傳統光二極體的磊晶結構原理與問題 14
2-3-1傳統PIN砷化鎵光二極體 14
2-3-2傳統PIN低溫砷化鎵光二極體 15
2-4分離式傳輸復合行波光二極體 17
圖2-11 分離式傳輸復合行波式光二極體在加大電場操作下之電場分佈改變示意圖 19
2-5吸光層最佳化設計之單載子傳輸行波式光二極體 20
2-6與之整合的天線結構與模擬 23
第三章 光檢測器設計與製作 27
3-1 磊晶設計 27
3-2 製作流程 30
3-2-1曝光顯影製程簡介 30
3-2-2 P-contact金屬化製程 31
3-3-2主動區蝕刻 32
3-2-3 N-contact金屬化製程 34
3-2-4快速熱回火 35
3-2-5元件區蝕刻 35
3-2-6平坦化與絕緣 36
3-2-7金屬導線連接線 38
3-2-8試片研磨與背部蝕刻 39
3-2-9元件切割 40
第四章 量測討論 45
4-1 直流量測 45
4-2 脈衝量測系統 47
4-3 脈衝量測結果與討論 49
4-3-1 脈衝量測結果分析及說明 49
4-3-2 Pulse量測頻譜分析及說明 55
第五章 結論 61
5-1 總結 61
5-2 未來方向 61
參考資料 62
參考文獻 [1] M. Z. Win and R. A. Scholtz, “ Impulse Radio: How it works,” IEEE Commun. Lett., vol. 2, pp. 36-38, 1998.
[2] K. Humphreys, J.P. Loughran, M. Gradziel, W. Lanigan, T. Ward, J. A. Murphy, C. O'Sullivan, “Medical applications of terahertz imaging: a review of current technology and potential applications in biomedical engineering,” Proc. EMBC, vol. 1, pp. 1302 - 1305, 2004.
[3] K. Kato, “Ultrawide-Band/High-Frequency Photodetectors,” IEEE Trans. Microwave Theory Tech., vol. 47, pp. 1265-1281, Jul., 1999.
[4] J. R. Pardo, J. Cernicharo, E. Serabyn, “Atmospheric transmission at microwaves (ATM): an improved model for millimeter/submillimeter applications,” IEEE Trans. on Antennas and Propagation, vol. 49, no. 12, pp. 1683 – 1694, Dec. 2001.
[5] M. C. Gaidis, H. M. Pickett, C. D. Smith, S. C. Martin, R. P. Smith, P. H. Siegel, “A 2.5-THz receiver front end for spaceborne applications,” IEEE Trans. on Microwave Theory and Tech., vol.48, no. 4, pp. 733 – 739, Apr., 2000.
[6] H. Eisele, A. Rydberg, and G. I. Haddad, “Recent advances in the performance of InP Gunn devices and GaAs TUNNET diodes for the 100-300GHz frequency range and above,” IEEE Trans. Microwave Theory Tech., vol. 48, pp. 626-631, Apr., 2000.
[7] Y. P. Gousev, I. V. Altukhov, K. A. Korolev, V. P. Sinis, M. S. Kagan, E. E. Haller, M. A. Odnoblyudov, I. N. Yassievich, and K.-A. Chao, “Widely tunable continuous-wave THz laser,” Appl. Phys. Lett., vol. 75, pp. 757-759, Aug., 1999.
[8] N. Orihashi, S. Suzuki, and M. Asada, “One THz harmonic oscillation of resonant tunneling diodes, ” Appl. Phys. Lett., vol. 87, pp. 233501, 2005.
[9] M. J. W. Rodwell, S. T. Allen, R. Y. Yu, M. G. Case, U. Bhattacharya, M. Reddy, E. Carman, M. Kamegawa, Y. Konishi, J. Pusl, R. Pullela, “Active and nonlinear wave propagation devices in ultrafast electronics and optoelectronics [and prolog]” Proceedings of the IEEE, vol. 82, pp. 1037-1059, Jul., 1994.
[10] H. Ito, T. Furuta, F. Nakajima, K. Yoshino, T. Ishibashi, “Photonic Generation of Continuous THz Wave Using Uni-Traveling-Carrier Photodiode,” J. of Lightwave Technol., vol. 23, pp. 4016-4021, Dec., 2005.
[11] Kirk Steven Giboney, Ph. D. Thesis, University of California at Santa Barbara, 1995.
[12] Yi-Jen Chiu, Ph. D. Thesis, University of California at Santa Barbara, 1999.
[13] 許晉瑋,金屬-半導體-金屬 行波式光偵測器,國立臺灣大學/光電工程學研究所博士論文(2001)
[14] Y. -L. Huang, and C. -K. Sun, “Nonlinear saturation behaviors of high-speed p-i-n photodetectors,” J. of Lightwave Technol., vol. 18, pp. 203-212, Feb., 2000.
[15] K. J. Williams, R. D. Esman, and M. Degenais, “Nonlinearities in p-i-n Microwave Photodetectors,” J. of Lightwave Technol., vol. 14, pp. 84-96, Jan., 1996.
[16] S. Gupta, J. F. Whitaker, and G. A. Mourou, “Ultrafast Carrier Dynamics in III-V Semiconductors Grown by Molecular-Beam Epitaxy at Very Low Substrate Temperatures,” IEEE J. of Quantum Electronics, vol. 28, pp. 2464-2472, 1992.
[17] J. P. Ibbetson, Ph. D. Thesis, University of California at Santa Barbara, 1998.
[18] J. -W. Shi, Y. -H. Chen, K. G. Gan, Y. J. Chiu, John. E. Bowers, M. -C. Tien, T.-M. Liu, and C. -K. Sun, “Nonlinear Behaviors of Low-Temperature-Grown GaAs-Based Photodetectors Around 1.3-μm Telecommunication Wavelength,” IEEE Photon. Tech. Lett., vol. 16, pp. 242-244, Jan., 2004.
[19] C. -K. Sun, Y. -H. Chen, J. -W. Shi, Y. -J. Chiu, K. G. Gan, and J. E. Bowers, “Electron relaxation and transport dynamics in low-temperature-grown GaAs under 1eV optical excitation,” Appl. Phys. Lett., vol. 83, pp. 911-913, Aug., 2003.
[20] H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, T. Ishibashi, “High-Speed and High-Output InP–InGaAs Uni-traveling Carrier Photodiodes,” IEEE J. of Sel. Topics in Quantum Electronics. vol. 10, pp. 709-727, Jul./Aug., 2004.
[21] M. Levinshtein, S. Rumyantsev, and M. Shur, Handbook Series on Semiconductor Parameters, World Scientific, Singapore, p. 2., 1996.
[22] N. Li, X. Li, S. Demiguel, X. Zheng, J. C. Campbell, D. A. Tulchinsky, K. J. Williams, T. D. Isshiki, G. S. Kinsey, and R. Sudharsansan, “High-saturation-current charge-compensated InGaAs-InP uni-traveling-carrier photodiode” IEEE Photon. Tech. Lett., vol. 16, pp. 864-866, 2004.
[23] Y. -C. Liang, and N. -W. Chen, “An ultra-broadband coplanar waveguide-fed circular monopole antenna,” EuCAP 2007, Edinburgh, UK, Nov., 2007.
[24] W. L. Stutzman and G. A. Thiele, Antenna theory and design, Chapter 6, 2nd Ed., John Wiely and Sons, 1998.
[25] 莊達人, “VLSI製造技術”, 高立圖書公司, 1995.
[26] T. -A. Liu, G. -R. Lin, Y. -C. Chang, C. -L. Pan, “Wireless audio and burst communication link with directly modulated THz photoconductive antenna,” Optic. Express, vol. 13, Issue 25, pp. 10416-10423, Dec., 2005.
[27] Y. -T. Li, J. -W. Shi, C. -L. Pan, C. -H. Chiu, W. -S. Liu, N. -W. Chen, C. -K. Sun, and J. -I. Chyi, “Sub-THz Photonic Transmitters Based on Separated-Transport-Recombination Photodiodes and a Micromachined Slot Antenna,” IEEE Photon. Tech. Lett., vol. 19, pp. 840-842, Jun., 2007.
[28] M. Tani, S. Matsuura, K. Sakai, and S. Nakashima, “Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs,” Applied Optics, vol. 36, pp. 7853-7859, Oct., 1997.
[29] N. Shimizu, N. Watanabe, T. Furuta, and T. Ishibashi, “InP-InGaAs Uni-Traveling-Carrier Photodiode With Improved 3-dB Bandwidth of Over 150GHz,” IEEE Photon. Tech. Lett., vol. 10, pp. 412-414, Mar., 1998.
[30] A. Hirata, T. Furuta, H. Ito, and T. Nagatsuma, “10-Gb/s Millimeter-Wave Signal Generation Using Photodiode Bias Modulation,” J. of Lightwave Technol., vol. 24, pp. 1725-1731, Apr., 2006.
[31] R. Xu, Y. Jin, and C. Nguyen, “Power-Efficient Switching-Based CMOS UWB Transmitters for UWB Communications and Radar Systems,” IEEE Trans. Microwave Theory Tech., vol. 54, pp. 3271-3277, Aug., 2006.
[32] S. Ramsey, E. Funk, and C. H. Lee, “A wireless photoconductive receiver using impulse modulation and direct sequence code division,” Int. Topical Meeting Microwave Photon., vol. 1, pp. 265-268, 1999.
[33] H. Togo, P. -C. P. Sah, N. Shimizu, T. Nagatsuma, “Gigabit Impulse Radio Link Using Photonic Signal-Generation Techniques,” European Microwave Conference 2005, vol. 1, pp. 4-7, Oct., 2005.
[34] T. -A. Liu, G. -R. Lin, Y. -C. Chang, C. -L. Pan, “Wireless audio and burst communication link with directly modulated THz photoconductive antenna,” Optic. Express, vol. 13, Issue 25, pp. 10416-10423, Dec., 2005.
[35] S. M. Duffy, S. Verghese, K. A. McIntosh, A. Jackson, A. C. Gossard, and S. Matsuura, “Accurate modeling of dual dipole and slot elements used with photomixers for coherent terahertz output power,” IEEE Trans. Microwave Theory Tech., vol. 49, pp. 1032-1038, Jun., 2001.
[36] J. -W. Shi, Y. -T. Li, C. -L. Pan, M. L. Lin, Y. S. Wu, W. S. Liu, and J. -I. Chyi, “Bandwidth enhancement phenomenon of a high-speed GaAs-AlGaAs based unitraveling carrier photodiode with an optimally designed absorption layer at an 830nm wavelength,” Appl. Phys. Lett., vol. 89, pp. 053512, 2006.
[37]K. P. Yang﹐P. L. Richaeds﹐and Y. R. Shen, “Generation of Far-Infrared Radiation by Picosecond Light Pulses in LiNbO3,” Appl. Phys. Lett., vol. 19, pp 320-323, 1971.
指導教授 許晉瑋(Jin-wei Shi) 審核日期 2008-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明