參考文獻 |
[1] IEEE 802.16.2-2001, “IEEE Recommended Practice for Local and Metropolitan Area Networks–Coexistence of Fixed Broadband Wireless Access Systems,” Sept. 2001.
[2] http://WirelessMAN.org
[3] IEEE 802.16-2001, “IEEE Standard for Local and Metropolitan Area Networks–Part 16: Air Interface for Fixed Broadband Wireless Access Systems,” Apr. 2002.
[4] IEEE P802.16a-2003, “Part 16: Air Interface for Fixed Broadband Wireless Access Systems–Amendment 2: Medium Access Control Modifications and Additional Physical Layer Specifications for 2-11 GHz,” Jan. 2003.
[5] D. B. Lesson, “A Simple Model of Feedback Oscillator Noise Spectrum,” Proc. IEEE, vol. 54, Feb. 1966, pp. 329-330.
[6] B. Razavi, ”A Study of Phase Noise in CMOS Oscillator,” IEEE J. of Solid-State Circuits, vol. 31, no. 3, pp. 331–343, March 1996.
[7] A. Hajimiri, and T. T. Lee, "A general theory of phase noise in electrical oscillators," IEEE J. of Solid-State Circuits, vol. 33, no.2, pp. 179-194, Feb. 1998.
[8] T. H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits, Cambridge University Press, 2004.
[9] A. Hajimiri, and T. H. Lee, “The design of low noise oscillators,” Cambridge University Press, 2004.
[10] A. Hajimiri, and T. H. Lee, “Design issues in CMOS differential LC oscillators,” IEEE J. of Solid-State Circuits, vol. 34, no.5, pp. 717-724, May 1999.
[11] D. Ham, and A. Hajimiri, “Concept and method in optimization of integrated LC VCOs,” IEEE J. of Solid-State Circuits, vol. 36, no.6, pp. 896-909, June 2001.
[12] T. Song, S. Ko, D. -H. Cho, H. -S. Oh, C. Chung, and E. Yoon, “A 5GHz transformer-coupled CMOS VCO using bias-level shifting technique,” IEEE Radio Frequency Integrated Circuits Symp., 2004, pp. 127-130.
[13] Y. Wachi, T. Nagasaku, H. Kondoh, “A 28GHz low-phase-noise CMOS VCO using an amplitude-redistribution technique,” IEEE International Solid-State Circuit Conference Dig. Tech., pp. 482-630, Feb. 2008.
[14] J. J. Rael and A. A. Abidi, “Physical Processes of Phase Noise in Differential LC Oscillators,” IEEE Custom Integrated Circuits Conference, 2000, pp. 569-562.
[15] C. –L. Yang, Y. –C. Chiang, “Low phase-noise and low-power CMOS VCO constructed in current-reused configuration,” IEEE Microwave and Wireless Components Letters, vol. 18, no. 2, pp. 136-138, Feb. 2008.
[16] B. Park, S. Lee, S. Choi, S. Hong, “A 12-GHz fully Integrated cascade CMOS LC VCO with Q-enhancement circuit,” IEEE Microwave and Wireless Components Letters, vol. 18, no. 2, pp. 133-135, Feb. 2008.
[17] C. –C. Li, C. –C. Chen, B. –J. Huang, P. –C. Hunag, K. –Y. Lin, H. Wang, “A novel ring-based triple-push 0.2-to-34 GHz VCO in 0.13-μm CMOS technology,” IEEE MTT-S, June 2008, pp. 347-350.
[18] T. –H. Lin, Y. –J. Lai, “An agile VCO frequency calibration technique for a 10-GHz CMOS PLL,” IEEE J. of Solid-State Circuits, vol. 42, no. 2, pp.340-349, Feb. 2007.
[19] Alan W. L. Ng, H. -C. Luong, “A 1-V 17-GHz 5-mW CMOS quadrature VCO based on transformer coupling,” IEEE J. of Solid-State Circuits, vol. 42, no. 9, pp.1933-1941, Sep. 2007.
[20] Y. –H. Peng, L. –H. Lu, “A Ku-band frequency synthesizer in 0.18-μm CMOS technology,” IEEE Microwave and Wireless Components Letters, vol. 17, no. 4, pp. 256-258, April. 2007.
[21] Y. –H. Peng, L. –H. Lu, “A 16-GHz triple-modulus phase-switching prescaler and Its application to a 15-GHz frequency synthesizer in 0.18-μm CMOS,” IEEE Trans. Microwave Theory Tech., vol. 55, no. 1, pp. 44-51, Jan. 2007.
[22] M. Demorkan, S. –P. Bruss, R. –R. Spencer, “11.8-GHz CMOS VCO with 62% tuning range using switched coupled inductors,” IEEE Radio Frequency Integrated Circuits Symp., June 2007, pp.401-404.
[23] Y. –H. Chen, H. –H. Hsieh, L. –H. Lu, “A 24-GHz receiver fronted with an LO signal generator in 0.18-μm CMOS,” IEEE Trans. Microwave Theory Tech., vol. 56, no. 56, pp. 1043-1051, May. 2008.
[24] Y. Wachi, T. Nagasaku, H. Kondoh, “A 28GHz low-phase-noise CMOS VCO using an amplitude-redistribution technique,” IEEE International Solid-State Circuit Conference Dig. Tech., pp. 482-630, Feb. 2008.
[25] C. –C Li, T. -P Wang, C. -C Kuo, M. -C Chung, H. Wang, “A 21 GHz Complementary Transformer Coupler CMOS VCO,” IEEE Microwave and Wireless Component Letters, vol. 18, no. 4, pp. 278-280, April 2008.
[26] C. –C. Wei, H. –C. Chiu, Y. –T. Yang, “A novel compact complementary colpitts differential CMOS VCO with low phase-noise performance,” IEEE Radio frequency Integrated Circuits Symp., 2008, pp. 541-544.
[27] T. –H. Huang, P. –L. You, “27-GHz low phase-noise CMOS standing-wave oscillator for millimeter wave applications,” IEEE MTT-S, June 2008, pp. 367-370.
[28] K. Kwol, , and J. -RLong, “A 23-to-29 GHz transconductor-tuned VCO MMIC in 0.13-um CMOS,” IEEE J. Solid-State Circuit, pp. 2878-2886, vol. 42, no. 12, Dec. 2007.
[29] K. Kwol, , and J. -RLong, J. –J. Pekarik, “A 23-to-29 GHz differentially tuned varactorless VCO in 0.13-μm CMOS,” IEEE International Solid-State Circuit Conference Dig. Tech., Feb. 2007, pp. 194-596.
[30] J. –C. Chien, L. –H. Lu, “A 32-GHz rotary traveling-wave voltage controlled oscillator in 0.18-μm CMOS” IEEE Microwave and Wireless Component Letters, vol. 17, no. 10, pp. 724-726, Oct. 2007.
[31] H. -H Hsieh, L. -H Lu, “A Low Phase Noise K-Band CMOS VCO”, IEEE Microwave and Wireless Component Letters, vol. 16, no. 10, pp. 552-554 Oct. 2006.
[32] H. Wu, and A. Harjimili, “A 19GHz 0.5mW 0.35μm CMOS frequency divider with shunt-peaking locking-range enhancement,” IEEE International Solid-State Circuit Conference Dig. Tech., pp. 412-413, Feb. 2001.
[33] M. Tiebout, “A CMOS direct injection-locked oscillator topology as high-frequency low-power frequency divider,” IEEE J. of Solid-State Circuits, vol. 39, no. 7, pp. 1170-1174, July 2004.
[34] F. Ellinger, L. C. Rodoni, G. Sialm, et al., “30-40-GHz drain-pumped passive-mixer MMIC fabricated on VLSI SOI CMOS technology,” IEEE Trans. Microwave Theory Tech., vol. 52, no. 5, pp.1382-1391, May 2004.
[35] J. C. Chien, L. H. Lu, “40GHz wide-locking-range regenerative frequency divider and low-phase-noise balance VCO in 0.18μm CMOS,” IEEE International Solid-State Circuit Conference Dig. Tech., Feb. 2007, pp. 544-621.
[36] K. H. Tsai, L. C. Cho, J. H. Wu, S. I. Liu, “3.5 mW w-band frequency divider with wide locking range in 90nm CMOS technology,” IEEE International Solid-State Circuit Conference Dig. Tech., pp. 466-628, Feb. 2008.
[37] S. L. Jang, C. F. Lee, W.H. Yeh, “A divider-by-3 injection locked frequency divider with single-ended input,” IEEE Microwave and Wireless Component Letters, vol. 18, no. 2, pp. 142-144, Feb. 2008.
[38] B. Razavi, “A study of injection locking and pulling in oscillators,” IEEE J. Solid-State Circuits, vol. 39, no. 9, pp.1415-1424, Sep. 2004.
[39] X. Li, S. Shekhar, D. J. Allstot, “Gm-boosted common-gate LNA and differential colpitts VCO/QVCO in 0.18μm CMOS,” IEEE J. Solid-State Circuits, vol. 40, no. 12, pp.2609-2619, Dec. 2005.
[40] C. Y. Wu, C. Y. Yu, “Design and analysis of a millimeter-wave direct injection-locked frequency divider with large frequency locking range,” IEEE Trans. Microwave Theory Tech., vol. 55, no. 8, pp. 1649-1658, Aug. 2007.
[41] S. –L. Jang, J. –C. Luo, C. –W. Chang, C. –F. Lee, J. –F. Huang, “LC-tank colpitts injection-locked frequency divider with even and odd modulo,” IEEE Microwave Wireless Component Letters, vol. 19, no. 2, pp. 113-115, Feb. 2009.
[42] S. –L. Jang, R. –K. Yang, C. –W. Chang, M. –H. Juang, “Multi-modulus LC injection-locked frequency dividers using single-ended injection,” IEEE Microwave Wireless Component Letters, vol. 19, no. 5, pp. 311-313, May. 2009.
[43] S. –L. Jang, S. –H. Huang, C. –F. Lee, M. –H. Juang, “LC-tank colpitts injection-locked frequency divider with record locking range,” IEEE Microwave Wireless Component Letters, vol. 18, no. 8, pp. 560-562, Aug. 2008.
[44] S. –L. Jang, M. –H. Suchen, C. –F. Lee, “Colpitts injection-locked frequency divider implemented with a 3-D helical transformer,” IEEE Microwave Wireless Component Letters, vol. 18, no. 6, pp. 410-412, June 2008.
[45] T. Shibasaki, H. Tamura, K. Kanda, H. Yamaguchi, J. Ogawa, T. Kuroda, “20-GHz quadrature injection-locked LC dividers with enhanced locking range,” IEEE J. of Solid-State Circuits, vol.43. no. 3, pp. 610-618, March. 2008.
[46] C. –C. Chen, C. –K. C. Tzuang, “A sub-1V 22-GHz CMOS injection-locked frequency divider,” European Microwave Integrated Circuits Conference, 3rd, Oct. 2008, pp. 68-70.
[47] S. –L. Jang, C. –F. Lee, “A wide locking range LC-tank injection-locked frequency divider,” IEEE Microwave Wireless Component Letters, vol. 17, no. 8, pp. 613-615, Aug. 2007.
[48] C. –F. Lee, S. –L. Jang, M. –H. Juang, “A wide locking range differential colpitts injection locked frequency dividers,” IEEE Microwave Wireless Component Letters, vol. 17, no. 11, pp. 790-792, Nov. 2007.
[49] Y. –H. Cho, M. –D. Tsai, H. –Y. Chang, C. –C. Chang, and H. Wang, “A low phase noise 52-GHz push-push VCO in 0.18-μm bulk CMOS technologies,” IEEE Radio Frequency Integrated Circuits Symp., 2005, pp.131-134.
[50] http://www.agilent.com/find/contactus
[51] E. Hegazi, H. Sjöland, and A. A. Abidi, “A filtering technique to lower LC oscillator phase noise,” IEEE J. of Solid-State Circuits, vol. 36. no. 12, pp. 1921-1930, Dec. 2001.
[52] D. Y. Jung, and C. S. Park, “Power efficient Ka-band low phase noise VCO in 0.13 μm CMOS,” Electronics Letters, vol. 44, no. 10, pp. 370-620, May 2008.
[53] H. –Y. Chang, H. Wang, “A 98/196 GHz low phase noise voltage controlled oscillator with a mode select using a 90 nm CMOS process,” IEEE Microwave and Wireless Components Letters, vol. 19, no. 3, pp. 170-172, Mar. 2009.
[54] H. –K. Chen, H. –J. Chen, D. –C. Chang, Y. –Z. Juang, and S. –S Lu, “A 0.6 V, 4.32 mW, 68 GHz low phase-noise VCO with intrinsic-tuned technique in 0.13 μm CMOS,” IEEE Microwave and Wireless Components Letters, vol. 18, no. 7, pp. 467-469, July 2008.
[55] N. Zhang, K. -O. Kenneth, “94 GHz voltage controlled oscillator with 5.8% tuning range in bulk CMOS,” IEEE Microwave and Wireless Components Letters, vol. 18, no. 7, pp. 548-550, Aug. 2008.
[56] S. Bozzola*, D. Guermandi**, A. Mazzanti**, and F. Svelto*, “An 11.5% frequency tuning, -184 dBc/Hz noise FOM 54 GHz VCO,” IEEE Radio Frequency Integrated Circuits Symposium, 2008, pp. 657-660.
[57] J. Borremans, M. Dehan, K. Scheir, M. Kuijk, P. Wambacq, “VCO design for 60 GHz application using differential shield inductors in 0.13 μm CMOS,” IEEE Radio Frequency Integrated Circuits Symp., 2008, pp. 135-138.
[58] H. –M. Cheema, R. Mahmoudi, “A 44.5 GHz differentially tuned VCO in 65nm bulk CMOS with 8% tuning range,” IEEE Radio Frequency Integrated Circuits Symp., 2008, pp. 649-652.
[59] D. –D. Kim, J. Kim, J. –O. Plouchart, C. Cho, W. Li, D. Lim, R. Trzcinski, M. Kumar, C. Norris, D. Ahlgren, “A 70GHz manufacturable complementary LC-VCO eith 6.14GHz tuning range in 65nm SOI CMOS,” IEEE International Solid-State Circuit Conference Dig. Tech., Feb, 2007, pp. 540-620.
[60] J. –C. Chien, L. –H. Lu, “Design of wide-tuning-range millimeter-wave CMOS VCO with a standing-wave architecture,” IEEE J. of Solid-State Circuits, vol. 42, no. 9, pp. 1942-1952, Sep. 2007.
[61] H. –Y. Yang, J. –H. Tsai, C. –H. Wang, C. –S. Lin, W. –H. Lin, K. –Y. Lin, T. –W. Wuang, and H. Wang, “Design and analysis of a 0.8-77.5-GHz ultra-broadband distributed drain mixer using 0.13-μm CMOS technology,” IEEE Trans. Microwave Theory Tech., vol. 57, no. 3, pp. 562-572, March 2009.
[62] C. –R. Wu, H. –H Hsieh, and L. –H. Lu, “An ultra-wideband distributed active mixer MMIC in 0.18-μm CMOS technology,” IEEE Trans. Microwave Theory Tech., vol. 55, no. 40, pp. 625-632, April 2007.
[63] J. –H. Tsai, P. –S. Wu, C. –S. Lin, T. –W. Huang, J. G. J. Chern, and W. –C. Huang, “A 25-75 GHz broadband gilbert-cell mixer ising 90-nm CMOS technology,” IEEE Microwave and Wireless Components Letters, vol. 17, no. 4, pp. 247-249, April 2007.
[64] C. –L. Kuo, B. –J. Huang, K. –Y. Lin, and H. Wang, “A 10-35 GHz low power bulk-driven mixer using 0.13μm CMOS process,” IEEE Microwave and Wireless Components Letters, vol. 18, no. 7, pp. 455-457, July 2008.
[65] H. –C. Chuang, C. –M. Lin, C. –H. Lin, and Y. –H. Wang, “A K- to Ka-band broadband doubly balanced monolithic ring mixer,” IEEE Microwave and Wireless Components Letters, vol. 18, no. 6, pp. 401-403, June 2008.
[66] C. –M. Lin, H. K. Lin, C. F. Lin, Y. –A. Lai, C. –H. Lin, and Y. –H. Wang, “A 16-44 GHz compact doubly balanced monolithic ring mixer,” IEEE Microwave and Wireless Components Letters, vol. 18, no. 9, pp. 620-622, Sep. 2008.
[67] C. –C. Kuo, C. –L, Kuo, C. –J. Kuo, S. A. Maas, and H. Wang, “Novel miniature and broadband millimeter-wave monolithic star mixers,” IEEE Trans. Microwave Theory Tech., vol. 56, no. 40, pp. 793-802, April 2008.
[68] Y. –A. Lai, C. –M. Lin, C. –H. Lin, and Y. –H. Wang, “A new Ka-band doubly balanced mixer based on lange couplers,” IEEE Microwave and Wireless Components Letters, vol. 18, no. 7, pp. 458-460, July 2008.
[69] C. –H. Lin, C. –M. Lin, Y. –A. Lai, and Y. –H. Wang, “A 26-38 GHz monolithic doubly balanced mixer,” IEEE Microwave and Wireless Components Letters, vol. 18, no. 9, pp. 623-625, Sep. 2008.
[70] C. –H. Lien, P. –S. Wu*, K. Y. Lin, and H. Wang, “A 60-GHz single-balanced gate-pumped down-conversion mixer with reduced-size rate-race hybrid on 130-nm CMOS process,” IEEE MTT-S, 2008, pp. 1481-1484.
[71] V. Issakov, A. Thiede, L. Verweyen, and M. Tiebout, “0.5-25 GHz inductorless single-ended resistive mixer in 0.13 μm CMOS,” Electronics Letters, vol. 45, no.2, pp. 108-109, Jan. 2009.
[72] J. –H Tsai, H. –Y. Yang, T. –W. Huang, and H. Wang, “A 30-100 GHz wideband sub-harmonic active mixer in 90 nm CMOS technology,” IEEE Microwave and Wireless Components Letters, vol. 18, no. 8, pp. 554-556, Aug. 2008.
[73] R. –S. Wu, C. –H. Wang, C. –S. Lin, K. –Y. Lin, and H. Wang, “A compact 60 GHz Integrated up-converter using miniature transformer couplers with 5 dB conversion gain,” IEEE Microwave and Wireless Components Letters, vol. 18, no. 9, pp. 641-643, Sep. 2008.
[74] J. –H. Tsai, and T. –W. Huang, “35-65 GHz CMOS broadband modulator and demodulator with sub-harmonic pumping for MMW wireless gigabit application,” IEEE Trans. Microwave Theory Tech., vol. 55, no. 10, pp. 2075-2085, Oct. 2007.
[75] C. –L. Kuo, C. –C. Kuo, C. –H. Lien, J. –H, Ysai, and H. Wang, “A novel reduced-size rat-race broadside coupler and its application for CMOS distributed sub-harmonic mixer,” IEEE Microwave and Wireless Components Letters, vol. 18, no. 3, pp. 194-196, March 2008.
[76] C. –M. Lin, H. –K, Lin, Y. –A Lai, C. –P. Chang, and Y. –H. Wang, “A 10-40 GHz broadband subharmonic monolithic mixer in 0.18μm CMOS technology,” IEEE Microwave and Wireless Components Letters, vol. 19, no. 2, pp. 95-97, Feb. 2009.
[77] I. H. Kang, and J. S. Park, “A reduced-size divider using the coupled line equivalent to a lumped inductor,” Microwave Journal, 46, 7, ABI/INFORM Trade & Industry, pp. 72, July 2003.
[78] H. –J. Wei, C. Meng, P. –Y. Wu, and K. –C. Tsung, “K-band CMOS sub-harmonic resistive mixer with a miniature marchand balun on lossy silicon substrate,” IEEE Microwave and Wireless Components Letters, vol. 18, no. 1, pp. 40-42, Jan. 2008.
|