博碩士論文 965201031 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:116 、訪客IP:18.119.129.31
姓名 陳瑋強(Wei-Ciang Chen)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 Ku/K頻段壓控振盪器及注入鎖定除頻器暨毫米波fT-倍頻電路壓控振盪器與寬頻混頻器之研製
(Ku/K Band Voltage Controlled Osillator, Injection Locked Frequency Divider, and Millimeter-Wave Voltage Controlled Oscillator, Broadband Mixer Using fT-Doubler Technique)
相關論文
★ 應用於筆記型電腦數位電視單極天線之研製★ 應用於數位機上盒與纜線數據機之電纜多媒體傳輸標準多工濾波器
★ 印刷共面波導饋入式多頻帶與超寬頻天線設計★ 微波存取全球互通頻段前向匯入式功率放大器與高效率Class F類功率放大器暨壓控振盪器電路之研製
★ 應用於矽基功率放大器與混頻器之傳輸線型變壓器研究★ 應用於V-頻段射頻收發機前端電路之低功耗源極注入式混頻器之研製
★ 應用積體電路上方後製程與整合被動元件於互補式金氧半導體製程之系統封裝研究★ 應用fT-倍頻電路架構於毫米波壓控振盪器與注入鎖定除頻器之研製
★ 應用傳輸線型變壓器於X/K–Ka/V頻段全積體整合之寬頻互補式金氧半導體功率放大器研製★ 應用於K / V 頻段低功耗混頻器之研製
★ 應用於K/V頻段之低功耗CMOS低雜訊放大器之研究★ 應用於5-GHz CMOS射頻前端電路之低電壓自偏壓式混頻器與高線性化功率放大器之研製
★ 應用於 K 頻段射頻接收機之寬頻低功耗 CMOS 低雜訊放大器之研製★ 應用磁耦合變壓器於K頻段之低功耗互補式金氧半導體壓控振盪器研製
★ 應用於K頻段之單向化全積體整合功率放大器與應用於V頻段之寬頻功率放大器研製★ 應用於C/X頻段全積體整合之互補式金氧半導體寬頻低功耗降頻器與寬頻功率混頻器之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文主要包含兩者主題,第一設計Ku頻段之本振訊號生成電路,包含壓控振盪器與注入鎖定除頻器,及K頻段之省面積壓控振盪器。第二使用fT-倍頻電路設計毫米波壓控振盪器及寬頻混頻器及寬頻次諧波混頻器。以上電路分別係使用TSMC 0.18 μm與TSMC 0.13 μm CMOS製程完成設計。
第一部分為Ku/K頻段之振幅分佈式壓控振盪器,以線性時變系統觀點分析此壓控振盪器之相位雜訊生成機制,並探討電壓限制與電流限制對此壓控振盪器之影響。電路架構上以雙共振腔增加閘極振幅來提升交錯耦合對電晶體之訊雜比,降低電晶體本身熱雜訊,進而減少相位雜訊中之電流雜訊功率頻譜密度,並手算分析在控制電壓變化下之雜訊分佈,與模擬與量測作驗證。使用TSMC 0.18 μm製程技術來實現此三位元切頻振幅分佈式壓控振盪器,振盪中心頻率為12.8 GHz,可調頻寬為720 MHz,且在供應電壓為1.2 V,功率消耗為6.4 mW下,於偏移頻率1 MHz時,相位雜訊為-114.83 dBc/Hz,計算優化指標為-188.93 dBc/Hz,晶片面積為0.54 mm2。考慮到使用雙共振腔造成面積上的損耗,係使用TSMC 0.13 μm CMOS製程技術來實現K頻段不等Q值變壓器之振幅分佈式壓控振盪器,設計一變壓器來減少雙共振腔面積,使用不等Q值電感設計方式來同樣達到振幅分佈之功效。振盪中心頻率為25 GHz,可調頻寬為900 MHz,且在供應電壓為1.2 V,功率消耗為5.82 mW下,於偏移頻率1 MHz時,相位雜訊為-107.16 dBc/Hz,計算優化指標為-187.6 dBc/Hz,晶片面積為0.02 mm2。
第二部分係使用TSMC 0.18 μm CMOS製程技術實現轉導提升注入鎖定除頻器設計。藉由架構與偏壓選擇,來達到低功率消耗且寬頻鎖定之特性。在供應電壓為1.8 V,功率消耗為3.78 mW下,鎖定頻寬範圍11~14.4 GHz達26.7 %以上,計算優化指標為7.36 %/mW,晶片面積為0.415 mm2。
第三部分為毫米波壓控振盪器,其中包含三種電路架構,同時以fT-倍頻電路作為設計核心。首先針對fT-倍頻電路作分析,係以第一種分析法應用在壓控振盪器設計上,具有低功率消耗及低相位雜訊之特性。架構一操作頻率為74 GHz,可調頻寬達1110 MHz以上,在供應電壓為1.2 V,功率消耗為12.38 mW下,於偏移頻率10 MHz時,相位雜訊為-114.7 dBc/Hz,計算優化指標為-181.2 dBc/Hz,晶片面積為0.012 mm2。架構二加入本質接面電容作可調電容設計,操作頻率為65 GHz,可調頻寬225 MHz以上,在供應電壓為1.5 V,功率消耗為9 mW下,於偏移頻率10 MHz時,相位雜訊為-102.8 dBc/Hz,計算優化指標為-169.6 dBc/Hz,晶片面積為0.024 mm2。架構三加入尾部電流源加入雜訊濾波電路及設計一高Q值μ型傳輸線作為共振腔及雜訊濾波電感。操作頻率為58.5 GHz,可調頻寬2590 MHz以上,在供應電壓為1.2 V,功率消耗僅5 mW下,於偏移頻率10 MHz時,相位雜訊為-121.8 dBc/Hz,計算優化指標為-190.1 dBc/Hz,晶片面積為0.02 mm2。
第四部分為毫米波寬頻混頻器,以低損耗平面式90o藍基耦合器補償電晶體fT之損耗,設計一寬頻、低功耗及高轉換增益之主動式單端寬頻混頻器。其量測結果在使用TSMC 0.18 μm CMOS製程下,供應電壓為1.8 V,功率消耗為9.54 mW下,操作頻率範圍7~67 GHz,轉換增益為4.6±1 dB,LO-IF隔離度大於30 dB,,P1dB壓縮點為-2 dBm,整體面積為0.5 mm2。在使用TSMC 0.13μm CMOS製程下,供應電壓為1.8 V,功率消耗為18 mW下,操作頻率範圍4.5~67 GHz,轉換增益為6.7±1.3 dB,LO-IF隔離度大於37 dB, P1dB壓縮點為1 dBm,整體面積為0.15 mm2。為了改善隔離度,設計一次諧波混頻器,以功率分配器與馬遜平衡器饋入射頻與本振訊號,在供應電壓為1.8 V,功率消耗為13.7 mW下,操作頻率範圍35~64 GHz,轉換增益為0±2 dB,各埠隔離度大於30 dB, P1dB壓縮點為2 dBm,整體面積為0.71 mm2。
摘要(英) The content of this thesis consists of six chapters. Two types RF and mm-wave circuits will be investigated in this thesis. The first one is an LO generation of Ku-band system, include voltage controlled oscillator (VCO) and injection locked frequency divider (ILFD), and a compact VCO for K-band system. The other one is millimeter-wave VCO, broadband mixer, and broadband sub-harmonic mixer using fT-doubler cell, which are implemented in TSMC 0.18-μm and TSMC 0.13-μm CMOS technologies, respectively.
Chapter two presents Ku/K-band voltage controlled oscillators with amplitude redistribution technique. The linear time-varying system concept is used to analyze the phase noise causing, and discuss the effect of the voltage limit and current limit of the VCO topology. The VCO is implemented by the bi-resonator to enhance the amplitude at the gate terminal of the cross couple pairs, which also increases the signal-to-noise ratio (SNR) to suppress the noise current injected to resonator, also decreases the power spectrum density on the phase noise, simultaneously. The analysis results are verified by hands-on calculation, circuit simulation, and measurements. A 3-bit band-switching amplitude redistribution VCO was implemented in TSMC 0.18-μm CMOS technology. The obtained oscillation frequency is 12.8 GHz, with a tuning range of 720 MHz under the supply voltage of 1.2 V. The power consumption is 6.4 mW. The measured phase noise is -114.83 dBc/Hz at 1-MHz offset frequency. The figure-of-merit (FoM) is -188.93 dBc/Hz. The total chip size included the test pads is 0.54 mm2.
An un-equal Q value of transformer architecture, instead of bi-resonator, is proposed to save chip area. The un-equal Q transformer with amplitude redistribution VCO was implemented in TSMC 0.13-μm CMOS technology. The center frequency is 25 GHz with the tuning range of 900 MHz under the supply voltage of 1.2 V. The power consumption is 5.82 mW. The measured phase noise is -107.16Bc/Hz at 1-MHz offset frequency. The figure-of-merit (FoM) is -187.6 dBc/Hz. The core area of this VCO is only 0.02 mm2.
Chapter three presents a Gm-boosted injection-locked frequency divider (ILFD) applied in Ku-band system. This ILFD circuit was implemented in TSMC 0.18-μm CMOS technology. The ILFD provides a wide locking range under low power dissipation through Gm-boosted VCO topology with the proper choice the bias point of injection transistor. The operating frequency is 11-14.4 GHz (>26.7%) under the supply voltage of 1.8 V. The power consumption is 3.78 mW. The calculated figure-of-merit is up to 7.36 %/mW. The total chip size included the test pads is 0.415 mm2.
Chapter four presents three types of millimeter-wave VCO using the fT-doubler cell. The fT-doubler cell is analyzed and applied to VCO designs, which perform low power dissipation and low phase noise. The VCO design using topology I can operate up to 74 GHz with the tuning range of 1100 MHz under a supply voltage of 1.2 V. The power consumption is 12.38 mW. The measured phase noise is -114.7 dBc/Hz at 10-MHz offset frequency. The calculated FoM is -181.2 dBc/Hz. The core area is only 0.012 mm2. The VCO design using topology II combines with the intrinsic capacitor to vary the operation frequency. The obtained center frequency is 65 GHz with a tuning range of 225 MHz under the supply voltage of 1.5 V. The power consumption is 9 mW. The measured phase noise is -102.8 dBc/Hz at 10-MHz offset frequency. The calculated FoM is -169.6 dBc/Hz. The core area is only 0.024 mm2. The VCO design using topology III modifies the fT-doubler cell to improve the phase noise for a noise filter and design a high Q μ–micro stripline to instead the inductor of resonator. The center frequency is 58.5 GHz with a tuning range of 2590 MHz under the supply voltage of 1.2 V. The power consumption is 5 mW. The measured phase noise is -121.8 dBc/Hz at 10-MHz offset frequency. The calculated FoM is -190.1 dBc/Hz. The core area is only 0.02 mm2.
Chapter five presents millimeter-wave broadband mixers using fT-doubler cell. The novel active single-ended mixer provides broadband, low power dissipation, and high conversion gain performance. The RF signal of mixer feeds in the through port of the Lange coupler to compensate the fT decrease of the fT-doubler cell against the frequency. The first one fT-doubler mixer was implemented in TSMC 0.18-μm CMOS technology with excellent performance. The operating frequency range of the mixer is 7~67 GHz under the supply voltage of 1.8 V. The power consumption is 9.54 mW. The conversion gain is 4.6±1 dB with the OP1dB of -2 dBm. The isolation of LO-IF, LO-RF, and RF-IF was better than 11 dB. The compact core chip area is 0.5 mm2. The second fT-doubler mixer was implemented in TSMC 0.13-μm CMOS technology. The single-ended mixer obtains the measured conversion gain of 6.7±3 dB from 4.5~67 GHz under the supply voltage of 1.8 V. The power consumption is 18 mW. The isolation of LO-IF is better than 30 dB. The measured OP1dB is 1 dBm. The core chip area is 0.15 mm2. To improve the isolation, a novel sub-harmonic mixer combines with a power divider and a stacked Marchand balun to input the signals of RF and LO. This broadband sub-harmonic mixer achieves a conversion gain of 0±2 dB from 35 to 64 GHz under the supply voltage of 1.8V. The total power dissipation is 13.7 mW. The measured isolations of LO-IF and LO-RF are better than 32 dB, RF-IF isolation is better than 44 dB. The measured OP1dB is 2 dBm. The core chip area is 0.71 mm2.
關鍵字(中) ★ 次諧波混頻器
★ 傳輸線耦合器
★ 本質接面電容
★ 轉導提升
★ fT倍頻器
★ 注入鎖定除頻器
★ 壓控振盪器
★ 相位雜訊
★ 脈衝靈敏函數
★ 變壓器
★ 雜訊濾波器
★ 寬頻混頻器
關鍵字(英) ★ gm-boosted
★ injection-locked frequency divider
★ transformer
★ impluse sensitive function
★ phase noise
★ voltage controlled oscillator
★ broadband-mixer
★ transmission line coupler
★ fT-doubler
★ intrinsic capacitor
★ noise filting
★ sub-harmonic mixer
論文目次 中文摘要 I
英文摘要 III
誌謝 VI
目錄 VIII
圖目錄 XI
表目錄 XVII
第一章 緒論 1
1-1 研究動機 1
1-2 研究成果 2
1-3 章節簡述 2
第二章 壓控振盪器 3
2-1 壓控振盪器導論 3
2-1.1 壓控振盪器簡介 3
2-1.2 壓控振盪器重要規格參數 3
2-2 相位雜訊 5
2-2.1 Lesson’s Low相位雜訊模型 5
2-2.2 線性時變系統 7
2-3 應用於Ku頻段之振幅分佈式壓控振盪器 14
2-3.1 振幅分佈式壓控振盪器設計原理 14
2-3.2 量測結果 25
2-3.3 結果討論 29
2-4 應用於K頻段不等Q值變壓器之振幅分佈式壓控振盪器 31
2-4.1 不等Q值變壓器之振幅分佈式壓控振盪器設計原理 31
2-4.2 量測結果 35
2-4.3 結果討論 38
第三章 直接注入鎖定除頻器 41
3-1 注入鎖定除頻器簡介 41
3-2 除頻器之重要參數 41
3-3 應用於Ku頻段之轉導提升直接注入鎖定除頻器 42
3-3.1 轉導提升直接注入鎖定除頻器設計原理 42
3-3.2 量測結果 50
3-3.3 結果討論 53
第四章 毫米波fT -倍頻電路設計 55
4-1 簡介 55
4-2 fT -倍頻電路分析 55
4-3 fT -倍頻壓控振盪器:架構一 65
4-3.1 fT -倍頻壓控振盪器設計原理(架構一) 67
4-3.2 量測結果 68
4-3.3 結果討論 72
4-4 fT -倍頻壓控振盪器:架構二 73
4-4.1 fT -倍頻壓控振盪器設計原理(架構二) 73
4-4.2 量測結果 75
4-4.3 結果討論 79
4-5 fT -倍頻壓控振盪器:架構三 80
4-5.1 fT -倍頻壓控振盪器設計原理(架構三) 80
4-5.2 量測結果 82
4-5.3 結果討論 85
第五章 毫米波fT-倍頻混頻器設計 87
5-1 混頻器 87
5-1.1 簡介 87
5-1.2 混頻器重要規格參數 88
5-2 毫米波fT -倍頻寬頻混頻器設計 91
5-2.1 毫米波寬頻混頻器設計原理 92
5-2.2 量測結果 98
5-2.3 結果討論 105
5-3 毫米波fT -倍頻次諧波混頻器設計 107
5-3.1 毫米波次諧波混頻器設計原理 108
5-3.2 量測結果 115
5-3.3 結果討論 119
第六章 結論 121
6-1 結論 121
6-2 未來期許與研究方向 123
參考文獻 124
參考文獻 [1] IEEE 802.16.2-2001, “IEEE Recommended Practice for Local and Metropolitan Area Networks–Coexistence of Fixed Broadband Wireless Access Systems,” Sept. 2001.
[2] http://WirelessMAN.org
[3] IEEE 802.16-2001, “IEEE Standard for Local and Metropolitan Area Networks–Part 16: Air Interface for Fixed Broadband Wireless Access Systems,” Apr. 2002.
[4] IEEE P802.16a-2003, “Part 16: Air Interface for Fixed Broadband Wireless Access Systems–Amendment 2: Medium Access Control Modifications and Additional Physical Layer Specifications for 2-11 GHz,” Jan. 2003.
[5] D. B. Lesson, “A Simple Model of Feedback Oscillator Noise Spectrum,” Proc. IEEE, vol. 54, Feb. 1966, pp. 329-330.
[6] B. Razavi, ”A Study of Phase Noise in CMOS Oscillator,” IEEE J. of Solid-State Circuits, vol. 31, no. 3, pp. 331–343, March 1996.
[7] A. Hajimiri, and T. T. Lee, "A general theory of phase noise in electrical oscillators," IEEE J. of Solid-State Circuits, vol. 33, no.2, pp. 179-194, Feb. 1998.
[8] T. H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits, Cambridge University Press, 2004.
[9] A. Hajimiri, and T. H. Lee, “The design of low noise oscillators,” Cambridge University Press, 2004.
[10] A. Hajimiri, and T. H. Lee, “Design issues in CMOS differential LC oscillators,” IEEE J. of Solid-State Circuits, vol. 34, no.5, pp. 717-724, May 1999.
[11] D. Ham, and A. Hajimiri, “Concept and method in optimization of integrated LC VCOs,” IEEE J. of Solid-State Circuits, vol. 36, no.6, pp. 896-909, June 2001.
[12] T. Song, S. Ko, D. -H. Cho, H. -S. Oh, C. Chung, and E. Yoon, “A 5GHz transformer-coupled CMOS VCO using bias-level shifting technique,” IEEE Radio Frequency Integrated Circuits Symp., 2004, pp. 127-130.
[13] Y. Wachi, T. Nagasaku, H. Kondoh, “A 28GHz low-phase-noise CMOS VCO using an amplitude-redistribution technique,” IEEE International Solid-State Circuit Conference Dig. Tech., pp. 482-630, Feb. 2008.
[14] J. J. Rael and A. A. Abidi, “Physical Processes of Phase Noise in Differential LC Oscillators,” IEEE Custom Integrated Circuits Conference, 2000, pp. 569-562.
[15] C. –L. Yang, Y. –C. Chiang, “Low phase-noise and low-power CMOS VCO constructed in current-reused configuration,” IEEE Microwave and Wireless Components Letters, vol. 18, no. 2, pp. 136-138, Feb. 2008.
[16] B. Park, S. Lee, S. Choi, S. Hong, “A 12-GHz fully Integrated cascade CMOS LC VCO with Q-enhancement circuit,” IEEE Microwave and Wireless Components Letters, vol. 18, no. 2, pp. 133-135, Feb. 2008.
[17] C. –C. Li, C. –C. Chen, B. –J. Huang, P. –C. Hunag, K. –Y. Lin, H. Wang, “A novel ring-based triple-push 0.2-to-34 GHz VCO in 0.13-μm CMOS technology,” IEEE MTT-S, June 2008, pp. 347-350.
[18] T. –H. Lin, Y. –J. Lai, “An agile VCO frequency calibration technique for a 10-GHz CMOS PLL,” IEEE J. of Solid-State Circuits, vol. 42, no. 2, pp.340-349, Feb. 2007.
[19] Alan W. L. Ng, H. -C. Luong, “A 1-V 17-GHz 5-mW CMOS quadrature VCO based on transformer coupling,” IEEE J. of Solid-State Circuits, vol. 42, no. 9, pp.1933-1941, Sep. 2007.
[20] Y. –H. Peng, L. –H. Lu, “A Ku-band frequency synthesizer in 0.18-μm CMOS technology,” IEEE Microwave and Wireless Components Letters, vol. 17, no. 4, pp. 256-258, April. 2007.
[21] Y. –H. Peng, L. –H. Lu, “A 16-GHz triple-modulus phase-switching prescaler and Its application to a 15-GHz frequency synthesizer in 0.18-μm CMOS,” IEEE Trans. Microwave Theory Tech., vol. 55, no. 1, pp. 44-51, Jan. 2007.
[22] M. Demorkan, S. –P. Bruss, R. –R. Spencer, “11.8-GHz CMOS VCO with 62% tuning range using switched coupled inductors,” IEEE Radio Frequency Integrated Circuits Symp., June 2007, pp.401-404.
[23] Y. –H. Chen, H. –H. Hsieh, L. –H. Lu, “A 24-GHz receiver fronted with an LO signal generator in 0.18-μm CMOS,” IEEE Trans. Microwave Theory Tech., vol. 56, no. 56, pp. 1043-1051, May. 2008.
[24] Y. Wachi, T. Nagasaku, H. Kondoh, “A 28GHz low-phase-noise CMOS VCO using an amplitude-redistribution technique,” IEEE International Solid-State Circuit Conference Dig. Tech., pp. 482-630, Feb. 2008.
[25] C. –C Li, T. -P Wang, C. -C Kuo, M. -C Chung, H. Wang, “A 21 GHz Complementary Transformer Coupler CMOS VCO,” IEEE Microwave and Wireless Component Letters, vol. 18, no. 4, pp. 278-280, April 2008.
[26] C. –C. Wei, H. –C. Chiu, Y. –T. Yang, “A novel compact complementary colpitts differential CMOS VCO with low phase-noise performance,” IEEE Radio frequency Integrated Circuits Symp., 2008, pp. 541-544.
[27] T. –H. Huang, P. –L. You, “27-GHz low phase-noise CMOS standing-wave oscillator for millimeter wave applications,” IEEE MTT-S, June 2008, pp. 367-370.
[28] K. Kwol, , and J. -RLong, “A 23-to-29 GHz transconductor-tuned VCO MMIC in 0.13-um CMOS,” IEEE J. Solid-State Circuit, pp. 2878-2886, vol. 42, no. 12, Dec. 2007.
[29] K. Kwol, , and J. -RLong, J. –J. Pekarik, “A 23-to-29 GHz differentially tuned varactorless VCO in 0.13-μm CMOS,” IEEE International Solid-State Circuit Conference Dig. Tech., Feb. 2007, pp. 194-596.
[30] J. –C. Chien, L. –H. Lu, “A 32-GHz rotary traveling-wave voltage controlled oscillator in 0.18-μm CMOS” IEEE Microwave and Wireless Component Letters, vol. 17, no. 10, pp. 724-726, Oct. 2007.
[31] H. -H Hsieh, L. -H Lu, “A Low Phase Noise K-Band CMOS VCO”, IEEE Microwave and Wireless Component Letters, vol. 16, no. 10, pp. 552-554 Oct. 2006.
[32] H. Wu, and A. Harjimili, “A 19GHz 0.5mW 0.35μm CMOS frequency divider with shunt-peaking locking-range enhancement,” IEEE International Solid-State Circuit Conference Dig. Tech., pp. 412-413, Feb. 2001.
[33] M. Tiebout, “A CMOS direct injection-locked oscillator topology as high-frequency low-power frequency divider,” IEEE J. of Solid-State Circuits, vol. 39, no. 7, pp. 1170-1174, July 2004.
[34] F. Ellinger, L. C. Rodoni, G. Sialm, et al., “30-40-GHz drain-pumped passive-mixer MMIC fabricated on VLSI SOI CMOS technology,” IEEE Trans. Microwave Theory Tech., vol. 52, no. 5, pp.1382-1391, May 2004.
[35] J. C. Chien, L. H. Lu, “40GHz wide-locking-range regenerative frequency divider and low-phase-noise balance VCO in 0.18μm CMOS,” IEEE International Solid-State Circuit Conference Dig. Tech., Feb. 2007, pp. 544-621.
[36] K. H. Tsai, L. C. Cho, J. H. Wu, S. I. Liu, “3.5 mW w-band frequency divider with wide locking range in 90nm CMOS technology,” IEEE International Solid-State Circuit Conference Dig. Tech., pp. 466-628, Feb. 2008.
[37] S. L. Jang, C. F. Lee, W.H. Yeh, “A divider-by-3 injection locked frequency divider with single-ended input,” IEEE Microwave and Wireless Component Letters, vol. 18, no. 2, pp. 142-144, Feb. 2008.
[38] B. Razavi, “A study of injection locking and pulling in oscillators,” IEEE J. Solid-State Circuits, vol. 39, no. 9, pp.1415-1424, Sep. 2004.
[39] X. Li, S. Shekhar, D. J. Allstot, “Gm-boosted common-gate LNA and differential colpitts VCO/QVCO in 0.18μm CMOS,” IEEE J. Solid-State Circuits, vol. 40, no. 12, pp.2609-2619, Dec. 2005.
[40] C. Y. Wu, C. Y. Yu, “Design and analysis of a millimeter-wave direct injection-locked frequency divider with large frequency locking range,” IEEE Trans. Microwave Theory Tech., vol. 55, no. 8, pp. 1649-1658, Aug. 2007.
[41] S. –L. Jang, J. –C. Luo, C. –W. Chang, C. –F. Lee, J. –F. Huang, “LC-tank colpitts injection-locked frequency divider with even and odd modulo,” IEEE Microwave Wireless Component Letters, vol. 19, no. 2, pp. 113-115, Feb. 2009.
[42] S. –L. Jang, R. –K. Yang, C. –W. Chang, M. –H. Juang, “Multi-modulus LC injection-locked frequency dividers using single-ended injection,” IEEE Microwave Wireless Component Letters, vol. 19, no. 5, pp. 311-313, May. 2009.
[43] S. –L. Jang, S. –H. Huang, C. –F. Lee, M. –H. Juang, “LC-tank colpitts injection-locked frequency divider with record locking range,” IEEE Microwave Wireless Component Letters, vol. 18, no. 8, pp. 560-562, Aug. 2008.
[44] S. –L. Jang, M. –H. Suchen, C. –F. Lee, “Colpitts injection-locked frequency divider implemented with a 3-D helical transformer,” IEEE Microwave Wireless Component Letters, vol. 18, no. 6, pp. 410-412, June 2008.
[45] T. Shibasaki, H. Tamura, K. Kanda, H. Yamaguchi, J. Ogawa, T. Kuroda, “20-GHz quadrature injection-locked LC dividers with enhanced locking range,” IEEE J. of Solid-State Circuits, vol.43. no. 3, pp. 610-618, March. 2008.
[46] C. –C. Chen, C. –K. C. Tzuang, “A sub-1V 22-GHz CMOS injection-locked frequency divider,” European Microwave Integrated Circuits Conference, 3rd, Oct. 2008, pp. 68-70.
[47] S. –L. Jang, C. –F. Lee, “A wide locking range LC-tank injection-locked frequency divider,” IEEE Microwave Wireless Component Letters, vol. 17, no. 8, pp. 613-615, Aug. 2007.
[48] C. –F. Lee, S. –L. Jang, M. –H. Juang, “A wide locking range differential colpitts injection locked frequency dividers,” IEEE Microwave Wireless Component Letters, vol. 17, no. 11, pp. 790-792, Nov. 2007.
[49] Y. –H. Cho, M. –D. Tsai, H. –Y. Chang, C. –C. Chang, and H. Wang, “A low phase noise 52-GHz push-push VCO in 0.18-μm bulk CMOS technologies,” IEEE Radio Frequency Integrated Circuits Symp., 2005, pp.131-134.
[50] http://www.agilent.com/find/contactus
[51] E. Hegazi, H. Sjöland, and A. A. Abidi, “A filtering technique to lower LC oscillator phase noise,” IEEE J. of Solid-State Circuits, vol. 36. no. 12, pp. 1921-1930, Dec. 2001.
[52] D. Y. Jung, and C. S. Park, “Power efficient Ka-band low phase noise VCO in 0.13 μm CMOS,” Electronics Letters, vol. 44, no. 10, pp. 370-620, May 2008.
[53] H. –Y. Chang, H. Wang, “A 98/196 GHz low phase noise voltage controlled oscillator with a mode select using a 90 nm CMOS process,” IEEE Microwave and Wireless Components Letters, vol. 19, no. 3, pp. 170-172, Mar. 2009.
[54] H. –K. Chen, H. –J. Chen, D. –C. Chang, Y. –Z. Juang, and S. –S Lu, “A 0.6 V, 4.32 mW, 68 GHz low phase-noise VCO with intrinsic-tuned technique in 0.13 μm CMOS,” IEEE Microwave and Wireless Components Letters, vol. 18, no. 7, pp. 467-469, July 2008.
[55] N. Zhang, K. -O. Kenneth, “94 GHz voltage controlled oscillator with 5.8% tuning range in bulk CMOS,” IEEE Microwave and Wireless Components Letters, vol. 18, no. 7, pp. 548-550, Aug. 2008.
[56] S. Bozzola*, D. Guermandi**, A. Mazzanti**, and F. Svelto*, “An 11.5% frequency tuning, -184 dBc/Hz noise FOM 54 GHz VCO,” IEEE Radio Frequency Integrated Circuits Symposium, 2008, pp. 657-660.
[57] J. Borremans, M. Dehan, K. Scheir, M. Kuijk, P. Wambacq, “VCO design for 60 GHz application using differential shield inductors in 0.13 μm CMOS,” IEEE Radio Frequency Integrated Circuits Symp., 2008, pp. 135-138.
[58] H. –M. Cheema, R. Mahmoudi, “A 44.5 GHz differentially tuned VCO in 65nm bulk CMOS with 8% tuning range,” IEEE Radio Frequency Integrated Circuits Symp., 2008, pp. 649-652.
[59] D. –D. Kim, J. Kim, J. –O. Plouchart, C. Cho, W. Li, D. Lim, R. Trzcinski, M. Kumar, C. Norris, D. Ahlgren, “A 70GHz manufacturable complementary LC-VCO eith 6.14GHz tuning range in 65nm SOI CMOS,” IEEE International Solid-State Circuit Conference Dig. Tech., Feb, 2007, pp. 540-620.
[60] J. –C. Chien, L. –H. Lu, “Design of wide-tuning-range millimeter-wave CMOS VCO with a standing-wave architecture,” IEEE J. of Solid-State Circuits, vol. 42, no. 9, pp. 1942-1952, Sep. 2007.
[61] H. –Y. Yang, J. –H. Tsai, C. –H. Wang, C. –S. Lin, W. –H. Lin, K. –Y. Lin, T. –W. Wuang, and H. Wang, “Design and analysis of a 0.8-77.5-GHz ultra-broadband distributed drain mixer using 0.13-μm CMOS technology,” IEEE Trans. Microwave Theory Tech., vol. 57, no. 3, pp. 562-572, March 2009.
[62] C. –R. Wu, H. –H Hsieh, and L. –H. Lu, “An ultra-wideband distributed active mixer MMIC in 0.18-μm CMOS technology,” IEEE Trans. Microwave Theory Tech., vol. 55, no. 40, pp. 625-632, April 2007.
[63] J. –H. Tsai, P. –S. Wu, C. –S. Lin, T. –W. Huang, J. G. J. Chern, and W. –C. Huang, “A 25-75 GHz broadband gilbert-cell mixer ising 90-nm CMOS technology,” IEEE Microwave and Wireless Components Letters, vol. 17, no. 4, pp. 247-249, April 2007.
[64] C. –L. Kuo, B. –J. Huang, K. –Y. Lin, and H. Wang, “A 10-35 GHz low power bulk-driven mixer using 0.13μm CMOS process,” IEEE Microwave and Wireless Components Letters, vol. 18, no. 7, pp. 455-457, July 2008.
[65] H. –C. Chuang, C. –M. Lin, C. –H. Lin, and Y. –H. Wang, “A K- to Ka-band broadband doubly balanced monolithic ring mixer,” IEEE Microwave and Wireless Components Letters, vol. 18, no. 6, pp. 401-403, June 2008.
[66] C. –M. Lin, H. K. Lin, C. F. Lin, Y. –A. Lai, C. –H. Lin, and Y. –H. Wang, “A 16-44 GHz compact doubly balanced monolithic ring mixer,” IEEE Microwave and Wireless Components Letters, vol. 18, no. 9, pp. 620-622, Sep. 2008.
[67] C. –C. Kuo, C. –L, Kuo, C. –J. Kuo, S. A. Maas, and H. Wang, “Novel miniature and broadband millimeter-wave monolithic star mixers,” IEEE Trans. Microwave Theory Tech., vol. 56, no. 40, pp. 793-802, April 2008.
[68] Y. –A. Lai, C. –M. Lin, C. –H. Lin, and Y. –H. Wang, “A new Ka-band doubly balanced mixer based on lange couplers,” IEEE Microwave and Wireless Components Letters, vol. 18, no. 7, pp. 458-460, July 2008.
[69] C. –H. Lin, C. –M. Lin, Y. –A. Lai, and Y. –H. Wang, “A 26-38 GHz monolithic doubly balanced mixer,” IEEE Microwave and Wireless Components Letters, vol. 18, no. 9, pp. 623-625, Sep. 2008.
[70] C. –H. Lien, P. –S. Wu*, K. Y. Lin, and H. Wang, “A 60-GHz single-balanced gate-pumped down-conversion mixer with reduced-size rate-race hybrid on 130-nm CMOS process,” IEEE MTT-S, 2008, pp. 1481-1484.
[71] V. Issakov, A. Thiede, L. Verweyen, and M. Tiebout, “0.5-25 GHz inductorless single-ended resistive mixer in 0.13 μm CMOS,” Electronics Letters, vol. 45, no.2, pp. 108-109, Jan. 2009.
[72] J. –H Tsai, H. –Y. Yang, T. –W. Huang, and H. Wang, “A 30-100 GHz wideband sub-harmonic active mixer in 90 nm CMOS technology,” IEEE Microwave and Wireless Components Letters, vol. 18, no. 8, pp. 554-556, Aug. 2008.
[73] R. –S. Wu, C. –H. Wang, C. –S. Lin, K. –Y. Lin, and H. Wang, “A compact 60 GHz Integrated up-converter using miniature transformer couplers with 5 dB conversion gain,” IEEE Microwave and Wireless Components Letters, vol. 18, no. 9, pp. 641-643, Sep. 2008.
[74] J. –H. Tsai, and T. –W. Huang, “35-65 GHz CMOS broadband modulator and demodulator with sub-harmonic pumping for MMW wireless gigabit application,” IEEE Trans. Microwave Theory Tech., vol. 55, no. 10, pp. 2075-2085, Oct. 2007.
[75] C. –L. Kuo, C. –C. Kuo, C. –H. Lien, J. –H, Ysai, and H. Wang, “A novel reduced-size rat-race broadside coupler and its application for CMOS distributed sub-harmonic mixer,” IEEE Microwave and Wireless Components Letters, vol. 18, no. 3, pp. 194-196, March 2008.
[76] C. –M. Lin, H. –K, Lin, Y. –A Lai, C. –P. Chang, and Y. –H. Wang, “A 10-40 GHz broadband subharmonic monolithic mixer in 0.18μm CMOS technology,” IEEE Microwave and Wireless Components Letters, vol. 19, no. 2, pp. 95-97, Feb. 2009.
[77] I. H. Kang, and J. S. Park, “A reduced-size divider using the coupled line equivalent to a lumped inductor,” Microwave Journal, 46, 7, ABI/INFORM Trade & Industry, pp. 72, July 2003.
[78] H. –J. Wei, C. Meng, P. –Y. Wu, and K. –C. Tsung, “K-band CMOS sub-harmonic resistive mixer with a miniature marchand balun on lossy silicon substrate,” IEEE Microwave and Wireless Components Letters, vol. 18, no. 1, pp. 40-42, Jan. 2008.
指導教授 邱煥凱(Hwann-Kaeo Chiou) 審核日期 2009-7-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明