博碩士論文 965201040 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:124 、訪客IP:13.58.137.218
姓名 李淑萍(Shu-ping Lee)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 1.3 um單模操作qL2光子晶體共振腔之設計與製作
(Design and fabrication of 1.3 um single-mode operation quasi-L2 photonic crystal cavity)
相關論文
★ 磷化銦異質接面雙極性電晶體元件製作與特性分析★ 氮化鎵藍紫光雷射二極體之製作與特性分析
★ 氮化銦鎵發光二極體之研製★ 氮化銦鎵藍紫光發光二極體的載子傳輸行為之研究
★ 次微米磷化銦/砷化銦鎵異質接面雙極性電晶體自我對準基極平台開發★ 以 I-Line 光學微影法製作次微米氮化鎵高電子遷移率電晶體之研究
★ 矽基氮化鎵高電子遷移率電晶體 通道層與緩衝層之成長與材料特性分析★ 磊晶成長氮化鎵高電子遷移率電晶體 結構 於矽基板過程晶圓翹曲之研析
★ 氮化鎵/氮化銦鎵多層量子井藍光二極體之研製及其光電特性之研究★ 砷化銦量子點異質結構與雷射
★ 氮化鋁鎵銦藍紫光雷射二極體研製與特性分析★ p型披覆層對量子井藍色發光二極體發光機制之影響
★ 磷化銦鎵/砷化鎵異質接面雙極性電晶體鈍化層穩定性與高頻特性之研究★ 氮化鋁中間層對氮化鋁鎵/氮化鎵異質接面場效電晶體之影響
★ 不同濃度矽摻雜之氮化鋁銦鎵位障層對紫外光發光二極體發光機制之影響★ 二元與四元位障層應用於氮化銦鎵綠光二極體之光性分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 摘要
近年來,光子晶體共振腔由於擁有高Purcell效應已被頻繁地使用以提升單光子源效率,利於未來量子密碼與通訊等應用。當光子晶體共振腔操作在單模的狀態,量子點產生的光子皆經由這單一的模態釋放出腔體,提升了量子點與模態的耦合效率有利達成高效率的光源。本研究使用的quasi-L2光子晶體共振腔體除了具有極低模態體積適合用以追求高Purcell效應外,更僅提供清晰可辨的三個模態以利於單模操作結構的設計。本研究進一步地對基本quasi-L2結構作幾何條件上的調變,成功地實現波長為1.3 ?m的單模操作quasi-L2光子晶體共振腔。實驗結果顯示,於品質因子1100且共振模態與量子點完全重合的情況下,量子點發光強度整整被提升70倍之多,極適合用以提升單光子源之效率。
摘要(英) Abstract
In recent years, photonic crystal defect cavity is widely used to achieve high Purcell factor for high efficiency single photon sources. As the defect cavity is operated at single mode condition, all the photons generated inside the cavity are forced to funnel through this single mode and lead to enhanced coupling efficiency. Previous study shows that a quasi-L2 defect cavity offers not only three clearly resonant modes but also a very small mode-volume, which is essential for high Purcell effect. In this study, we adjust the geometric parameters of quasi-L2 photonic crystal defect cavity, and successfully realize a 1.3??m single mode photonic crystal cavity. For a cavity with quality factor of 1100, the quantum dot luminescence intensity is enhanced over 70 fold, demonstrating its potential of q-L2 photonic crystal cavity for high efficiency single photon sources and lasers.
關鍵字(中) ★ 光子晶體 關鍵字(英) ★ photonic crystal
論文目次 目錄
中文摘要 i
英文摘要 ii
目錄 iii
圖目錄 v
表目錄 ix
第一章 導論 1
1-1 光子晶體導論 1
1-2 研究動機 3
第二章 qL2光子晶體共振腔基本特性分析 5
2-1 基本原理 5
2-2 光子晶體三維電場分布 6
2-3 qL2光子晶體模態體積計算 11
2-4 qL2光子晶體品質因子分析 16
2-5 結論 22
第三章 單模操作qL2光子晶體共振腔設計 23
3-1 空間上調變空氣孔洞破壞qL2共振模態的駐波條件 23
3-1.1 調變Y軸方向空氣孔洞 24
3-1.2 第一層週期空氣孔洞尺寸增大 31
3-2 頻譜上調變光子晶體共振模態的基本原理 40
3-2.1 調變週期空氣孔洞半徑對光子能隙的影響 40
3-2.2 調變缺陷空氣孔洞幾何條件對共振模態的影響 42
3-2.3 調變週期空氣孔洞幾何條件對共振模態的影響 46
3-2.4 調變晶格常數的影響 48
3-3 頻譜上的調變 49
3-3.1 R’/a的調變 50
3-3.2 R/a的調變 51
3-4 結論 53
第四章 單模操作qL2光子晶體光學特性 54
4-1 前言 54
4-2 單模操作qL2共振腔體元件製作流程 54
4-3 單模操作qL2共振腔體元件量測與分析 56
4-4 單模操作qL2結構量子點輻射生命週期 61
4-5 結論 64
第五章 結論與未來展望 65
文獻參考 66
參考文獻 參考文獻
[1] E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Physical Review Letter, 69, 681 (1946).
[2] Yoshihiro Akahane, Takashi Asano, Bong-Shik Song& Susumu Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal ,” Nature, 425, 944 (2003).
[3] P. R. Villeneuve, S. Fan, S. G. Johnson, and J. D. Joannopoulos, “Three-dimensional photonconfinement in photonic crystals of low-dimensional periodicity,” IEE Proc. Optoelec.,145, 384 (1998).
[4] Hong-Gyu Park, Jeong-Ki Hwang, Joon Huh, Han-Youl Ryu and Yong-Hee Lee, “Nondegenerate monopole-mode two-dimensional photonic band gap laser,” Appl. Phys. Letter, 79 3032 (2001).
[5] T. Tawara, H. Kamada, Y. -H. Zhang, T. Tanabe, N. I. Cade, D. Ding, S. R. Johnson, H. Gotoh, E. Kuramochi, M. Notomi, and T. Sogawa, “Quality factor control and lasing characteristics of InAs/InGaAs quantum dots embedded in photonic-crystal nanocavities,” Optics Express,16, 5199 (2008).
[6] 曾彥鈞,高品質因子與低模態體積光子晶體微共振腔之設計與製作,中央大學碩士論文,(2005)。
[7] Dirk Englund, David Fattal, Edo Waks, Glenn Solomon, Bingyang Zhang, Toshihiro Nakaoka, Yasuhiko Arakawa, Yoshihisa Yamamoto, and Jelena Vuˇckovi´c, “Controlling the Spontaneous Emission Rate of Single Quantum Dots in a 2D Photonic Crystal,” Physical Review Letter, 95, 013904 (2005).
[8] P. Bhattacharya, J. Sabarinathan, J. Topol’anˇc ik, S. Chakravarty, Pei-Chen Yu, Weidong Zhou, “Quantum Dot Photonic Crystal Light Sources,” Proceeding of the IEEE, 93, 1825 (2005).
[9] 欒丕剛、陳啟昌,光子晶體-從蝴蝶翅膀到奈米光子學,初版,五南文化 (2005)。
[10] Masayuki Shirane, Shunsuke Kono, Jun Ushida, and Shunsuke Ohkouchi, “Mode identification of high-quality-factor single-defect nanocavities in quantum dot-embedded photonic crystals,” Journal of Applied Physics, 101, 073107 (2007).
[11] A. R. A. Chalcraft and S. Lam, “Mode structure of the L3 photonic crystal cavity,” Appl. Phys. Letter, 90, 241117 (2007).
[12] Susumu Noda, Masayuki Fujita and Takashi Asano, “Spontaneous-emission controlled by photonic crystals and nanocavities,” Nature photonic, 1, 449 (2007).
[13] Kengo Nozaki and Toshihiko Baba, “Laser characteristics with ultimate-small modal volume in photonic crystal slab point-shift nanolasers,” Appl. Phys. Letter, 88, 211101 (2006).
[14] W.-Y. Chen, W.-H. Chang, H.-S. Chang, and T. M. Hsu, “Enhanced light emission from InAs quantum dots in single-defect photonic crystal microcavities at room temperature”, Appl. Phys. Letter, 87, 07111 (2005).
[15] Yu Tanaka, Hitoshi Kawashima, Naoki Ikeda, Yoshimasa Sugimoto, Haruhiko Kuwatsuka, Toshihumi Hasama, and Hiroshi Ishikawa, “Optical Bistable Operations in AlGaAs-Based Photonic Crystal Slab Microcavity at Telecommunication Wavelengths,” IEEE Photonics Technology Letters,18, 1996 (2006).
[16] John. D. Joannopoulos, Robert D. Meade, Joshua N. Winn, Photonic crystals: Molding the Flow of light, Princeton : Princeton University Press, c2008.
[17] Han-Youl Ryu, Jeong-Ki Hwang, and Yong-Hee Lee, “Effects of size nonuniformities on the band gap of two-dimemsional photonic crystals,” Physical Review B, 59, 5463 (1999).
[18] P.R. Villeneuve, S. Fan, S. G. Johnson, J. D. Joannopoulus, “Three-dimensional photon confinement in photonic crystal of low-dimensional periodicity,” IEE Proc.-Optoelectron, 145, 384 (1998).
[19] W.-H. Chang, W.-Y. Chen, H.-S. Chang, and T. M. Hsu, “Optical emission from individual InGaAs quantum dots in single-defect photonic crystal nanocavity,” J. Appl. Phys., 98, 034306 (2005).
[20] R. Oulton1, B.D. Jones1, S. Lam1, A.R.A. Chalcraft, D. Szymanski, D. O’Brien, T.F.Krauss, D. Sanvitto, A.M. Fox1, D.M. Whittaker, M. Hopkinson, M.S. Skolnick, “Polarized quantum dot emission from photonic crystal nanocavities studied under moderesonant enhanced excitation,” Optics Express, 15, 17221 (2007).
[21] W.-Y. Chen, H.-S. Chang, and T. M. Hsu, “Temperature stability of single-photon emission from InGaAs quantum dots in photonic crystal nanocavities,” Appl. Phys. Letter, 90, 211114 (2007).
指導教授 綦振瀛(Jen-inn Chyi) 審核日期 2009-7-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明