博碩士論文 965201045 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:3.147.86.169
姓名 楊雅雯(Ya-wen Yang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 增強型假晶格高電子遷移率電晶體模型的建立與微波功率放大器設計
(Enhancement-mode Pseudomorphic High Electron Mobility Transistor Model and Microwave Power Amplifier)
相關論文
★ 增強型異質結構高速移導率電晶體大信號模型之建立及其在微波放大器之應用★ 空乏型暨增強型Metamorphic HEMT之製作與研究
★ 電子式基因序列偵測晶片之原型★ 增強型與空乏型砷化鋁鎵/砷化銦鎵假晶格高電子遷移率電晶體: 元件特性、模型與電路應用
★ 使用覆晶技術之微波與毫米波積體電路★ 注入增強型與電場終止型之絕緣閘雙極性電晶體佈局設計與分析
★ 以標準CMOS製程實現之850 nm矽光檢測器★ 600 V新型溝渠式載子儲存絕緣閘雙極性電晶體之設計
★ 具有低摻雜P型緩衝層與穿透型P+射源結構之600V穿透式絕緣閘雙極性電晶體★ 雙閘極金氧半場效電晶體與電路應用
★ 空乏型功率金屬氧化物半導體場效電晶體 設計、模擬與特性分析★ 高頻氮化鋁鎵/氮化鎵高速電子遷移率電晶體佈局設計及特性分析
★ 氮化鎵電晶體 SPICE 模型建立 與反向導通特性分析★ 加強型氮化鎵電晶體之閘極電流與電容研究和長時間測量分析
★ 新型加強型氮化鎵高電子遷移率電晶體之電性探討★ 氮化鎵蕭特基二極體與高電子遷移率電晶體之設計與製作
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 功率放大器在無線傳輸系統的收發端模組中是非常重要的零組件,而高效能功率放大器設計又相當依賴精準非線性元件模型;因此在本論文裡,我們提出一個可以準確描述元件非線性特性的模型以及一個高線性度的功率放大器,並且利用砷化鎵高電子遷移率電晶體的製程來實現。
我們提出新的電流方程式並利用平滑方程式去彌補傳統元件模型對於高電子遷移率電晶體電流特性與其微分特性的不精準,電容方程式的部分採用Statz Model 電荷模型來描述。透過AgilentTM ADS 模擬軟體SDD的環境下,完整地描述0.5 μm 砷化銦鎵增強型假晶格高電子遷移率電晶體的特性,並將模擬與量測結果做比較,如功率飽和、諧波失真等,證實此大訊號模型有不錯的準確性。
透過建立元件非線性模型,瞭解了元件失真的原因之後,本論文提出一線性器電路架構來設計高線性度功率放大器,並利用0.15 μm 高電子遷移率電晶體製程來實現此放大器。由於線性器電路提供共源極放大器功率增益及相位的補償,因此有較好的線性度表現。電路的量測結果靜態電流、功率增益、1 dB 輸出飽和功率、分別為320 mA、16 dB、27.5 dBm;注入3.5 GHz WiMAX 64 QAM 調變訊號時,相對星座圖向量誤差量測結果為3.5 %。
摘要(英) Power amplifier is a very important component in the wireless transmitter. The high performance power amplifier must depend on accurate nonlinear device model. In this thesis, an accurate nonlinear model and a high linearity power amplifier are designed, analyzed, and demonstrated for InGaAs pHEMT.
We proposed a novel current model for 0.5 μm InGaAs pHEMTs enhancement-mode device. The model is differentiable for any order at full bias range by utilizing smooth function technique in the symbolical defined device environment (SDD). The Statz charge model is included for device capacitance in this model. The proposed model predicted the DC, S-parameters, microwave power, and nonlinear distortion characteristics more accurate in comparison with conventional compact model. Further, the model is convenient and direct to be embedded in commercial harmonic balanced simulator.
Utilizing nonlinear model tools, the high performance power amplifier was realized for WiMAX applications. The predistortion method in this work was used to improve AM-AM and AM-PM distortion at high power operation without degrading the intrinsic performance. The power amplifier was successfully demonstrated at 3.5 GHz. The power performances were power gain of 16 dB, maximum power of 29.5 dBm, output linear power (P1dB) of 27.5 dBm. The measured EVM was smaller than 3.5 % using 3.5 GHz 64 QAM WiMAX signal.
關鍵字(中) ★ 功率放大器
★ 高電子遷移率電晶體模型的建立
關鍵字(英) ★ HEMT Model
★ Power Amplifier
論文目次 摘要 ........................................................................................................................ I
英文摘要 .............................................................................................................. II
目錄 .................................................................................................................... III
圖目錄 ................................................................................................................. VI
表目錄 ................................................................................................................. IX
第一章緒論 ...................................................................................................... 1
1.1 研究背景與動機 .................................................................................. 1
1.2 相關研究發展 ...................................................................................... 6
1.3 論文架構 .............................................................................................. 9
第二章增強型假晶格高電子遷移率電晶體小訊號模型的建立 ............... 10
2.1 簡介 .................................................................................................... 10
2.2 小訊號模型理論分析與建立流程.................................................... 11
2.3 增強型假晶格高電子遷移率電晶體小訊號模型的建立 ............... 14
2.3.1 元件特性簡介 ......................................................................... 14
2.3.2 外部寄生元件參數的萃取流程 ............................................. 15
2.3.3 內部本質元件參數的萃取流程 ............................................. 23
2.3.4 參數萃取結果 ......................................................................... 27
2.4 結語 .................................................................................................... 34
第三章增強型假晶格高電子遷移率電晶體大訊號模型的建立 ............... 35
3.1 簡介 .................................................................................................... 35
3.2 大訊號模型介紹 ................................................................................ 36
3.3 增強型假晶格高電子遷移率電晶體大訊號模型的建立 ............... 40
3.3.1 電流電壓方程式 ..................................................................... 41
3.3.2 電容非線性方程式 ................................................................. 43
3.4 量測與模擬結果 ................................................................................ 45
3.4.1 直流特性模擬與量測結果 ..................................................... 45
3.4.2 小訊號S 參數模擬與量測結果 ............................................. 47
3.4.3 高頻功率特性模擬與量測結果 ............................................. 51
3.4.4 交互調變失真模擬與量測結果 ............................................. 57
3.5 結語 .................................................................................................... 59
第四章高線性度射頻功率放大器 ................................................................ 60
4.1 簡介 .................................................................................................... 60
4.2 高線性度功率放大器的電路設計與特性分析 ............................... 61
4.2.1 非線性分析與線性器電路 ..................................................... 61
4.2.2 電路架構 ................................................................................. 64
4.2.3 電路特性分析 ......................................................................... 65
4.3 高線性度功率放大器的量測結果.................................................... 70
4.4 結語 .................................................................................................... 79
第五章結論 .................................................................................................... 80
【參考文獻】 ..................................................................................................... 82
參考文獻 [01] M. R. Pinto, S. C. Rafferty, and R. W. Dutton,” poisson and continuity equation solver,” Stanford electronics laboratory, technical report, Stanford University, 1984.
[02] Agilent IC-CAP user manual
[03] H. K. Gummel and R. C. Poon, “An integral charge control model of bipolar transistors,” Bell system Tech, Journal, vol. 49, pp. 827–852, May–June 1970
[04] http://www-deivce.eecs.berkeley.edu/~bsim3/bsim_ent.html
[05] C.C. McAndrew, J.A. Seitchik, D.F. Bowers, M. Dunn, M. Foisy, I. Getreu, M. McSwain, S. Moinian, J. Parker, D.J. Roulston, M. Schroter, P. Wijnen and L.F. Wagner,“ VBIC95, the vertical bipolar inter-company model,” IEEE Journal of Solid-State Circuits, vol.31, no.10, pp.1476-1483, Oct 1996
[06] Agilent ADS user manual
[07] H. Statz, P. Newman, I. Smith, R. Pucel, and H. Haus, “GaAs FET device and circuit simulation in SPICE,” IEEE Trans. on Electron Devices, vol. 34, pp. 160-169, Feb. 1987
[08] W.R. Curtice, M. Ettenberg, “A Nonlinear GaAs FET Model for Use in the Design of Output Circuits for Power Amplifiers,” IEEE Trans. on Microwave Theory and Tech., vol.33, no.12, pp. 1383-1394, Dec 1985
[09] Y. Tajima, B. Wrona, and K. Mishima, “GaAs FET large-signal model and its application to circuit designs,” IEEE Trans. on Electron Device, vol. 28, pp. 171-175, Feb. 1981
[10] A. J. McCaman, G. D. McCormack, and D. H. Smith., “An Improved GaAs MESFET Model for SPICE,” IEEE Trans. on Microwave Theory and Tech., vol. 38, pp.822-824, June 1990
[11] A. Materka and T. Kacprzak, “Computer Calculation of Large-Signal GaAs FET Amplifier Characteristics,” IEEE Trans. on Microwave Theory and Tech., vol. 33, pp. 129-135, Feb, 1985
[12] I. Angelov, H. Zirath, and N. Rorsman, “A new empirical nonlinear model for HEMT and MESFET devices,” IEEE Trans. on Microwave Theory and Tech., vol. 40, pp. 2258-2266, Dec. 1992
[13] H.C. de Graaff and W.J. Kloosterman: “Modeling of the collector Epilayer of a Bipolar Transistor in the Mextram Model.” IEEE Trans. on Electron devices, Vol. ED-42, p. 274, February 1995
[14] T. Oka, M. Hasegawa, K. Fujita, M. Yamashita, M. Hirata, H. Kawamura, K. Sakuno, “Enhanced linearity and efficiency of HBT power amplifiers for 5-GHz wireless-LANs,” 2005 IEEE MTT-S International Microwave Symposium Digest, pp. 649-652 June 2005
[15] D. A. Neamen, “Semiconductor Physics and Devices: Basic Principle, 3rd ed.,” McGraw-Hill, pp. 602-609, 2003.
[16] A. E. Parker, D. J. Skellern, “A realistic large-signal MESFET model for SPICE,” IEEE Trans. on Microwave Theory and Tech., vol.45, no.9, pp.1563-1571, Sep 1997
[17] D. Schreurs, Y. Baeyens, K. Van der Zanden, J. Verspecht, M. Van Hove, W. De Raedt, B. Nauwelaers and M. Van Rossum,“ Large-signal HEMT modelling, specifically optimized for InP based HEMTs,” Conference on Eighth Int. vol., no., pp.638-641, 21-25 Apr 1996
[18] V.I. Cojocaru and T.J. Brazil, “A scalable general-purpose model for microwave FETs including DC/AC dispersion effects,” IEEE Trans. on Microwave Theory and Tech.s, vol.45, no.12, pp.2248-2255, Dec 1997
[19] M. Miyashita, T. Okuda, H. Kurusu, S. Shimamura, S. Konishi, J. Udomoto, R. Matsushita, Y. Sasaki, S. Suzuki, T. Miura, M. Komaru and K Yamamoto,“ Fully Integrated GaAs HBT MMIC Power Amplifier Modules for 2.5/3.5-GHz-Band WiMAX Applications”, CSIC 2007.
[20] P. D. Tseng, L. Zhang, G. B. Gao and M. F. Chang,“ A 3V monolithic SiGe HBT power amplifier for dual-mode (CDMA/AMPS) cellular handset applications,” IEEE Journal of Solid- State Circuits, vol. 35, no. 9, pp. 1338–1344, Sep. 2000
[21] X. Zhang, C. Saycocie, S. Munro and G. Henderson, “A SiGe HBT power amplifier with 40% PAE for PCS CDMA applications,” IEEE MTT-S International Microwave Symposium Digest, pp. 857-860, 2000
[22] K. Yamamoto, S. Suzuki, K. Mori, T. Asada, T. Okuda, A. Inoue, T. Miura, K. Chomei, R. Hattori, M. Yamanouchi and T. Shimura, “A 3.2-V operation single-chip dual-band AlGaAs/GaAs HBT MMIC power amplifier with active feedback circuit technique, ” IEEE Journal of Solid-State Circuits, vol.35, no.8, pp.1109-1120, Aug 2000.
[23] W. C. Hua, H. H. Lai, P. T. Lin, C. W. Liu, T. Y. Yang and G. K. Ma, “High-linearity and temperature-insensitive 2.4 GHz SiGe power amplifier with dynamic-bias control, ” IEEE Radio Frequency Integrated Circuits Symposium, pp. 609-612, 2005
[24] AWM6430, in Anadigics data sheet
[25] SZM-3066Z, in Sirenza data sheet
[26] TGA2703-SM, in TriQuint data sheet
[27] TRF1223, in Texas Instruments data sheet
[28] ALM-31322, in Avago data shee
[29] G. Dambrine, A. Cappy, F. Heliodore and E. Playez, “A new method for determining the FET small-signal equivalent circuit,” IEEE Trans. on Microwave Theory and Tech., vol. 36, pp. 1151-1160, July 1988
[30] L. Yang and S.I. Long, “New method to measure source and drain resistance of the GaAs MESFET Model,” IEEE Electron Device Letters, vol. 7, pp. 75-77, 1986
[31] N. Borges de Carvalho, J.C. Pedro, “A comprehensive explanation of distortion sideband asymmetries,” IEEE Transactions on Microwave Theory and Tech., vol.50, no.9, pp. 2090-2101, Sep 2002
[32] B. L. Ooi and J. Y. Ma, “An improved but reliable model for MESFET parasitic capacitance extraction,” IEEE Radio Frequency Integrated Circuits Symposium, pp. 567-580, June, 2003
[33] S. A. Maas, “Nonlinear microwave and RF circuits,” Artech House, 2003
[34] S. M. SZE, “Physics of Semiconductor Devices, 3rd ed.,” John Wiley, pp.273-400, 2007
[35] C. K. Chu, H. K. Huang, H. Z. Liu, R. J. Chiu, C. H. Lin, C. C. Wang, M. P. Houng, Y.H. Wang, C. C. Hsu, W. Wu, C. L. Wu and C. S. Chang, “A fully matched high linearity 2-W PHEMT MMIC power amplifier for 3.5 GHz applications,” IEEE Microwave and Wireless Components Letters, vol.15, no.10, pp. 667-669, Oct. 2005
[36] PD50-01 0.5μm InGaAs pHEMT Enhancement/Depletion-Mode Device (E/D-Mode) Device Model Handbook
指導教授 辛裕明、詹益仁
(Yue-ming Hsin、Yi-jen Chan)
審核日期 2009-7-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明