博碩士論文 965201057 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:27 、訪客IP:3.135.247.17
姓名 楊傑甯(Jie-ning Yang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 次微米氮化鎵電晶體之製程與特性分析
(The Device Fabrication and Characteristic of Sub-micron GaN HEMT)
相關論文
★ 增強型異質結構高速移導率電晶體大信號模型之建立及其在微波放大器之應用★ 空乏型暨增強型Metamorphic HEMT之製作與研究
★ 電子式基因序列偵測晶片之原型★ 增強型與空乏型砷化鋁鎵/砷化銦鎵假晶格高電子遷移率電晶體: 元件特性、模型與電路應用
★ 使用覆晶技術之微波與毫米波積體電路★ 注入增強型與電場終止型之絕緣閘雙極性電晶體佈局設計與分析
★ 以標準CMOS製程實現之850 nm矽光檢測器★ 600 V新型溝渠式載子儲存絕緣閘雙極性電晶體之設計
★ 具有低摻雜P型緩衝層與穿透型P+射源結構之600V穿透式絕緣閘雙極性電晶體★ 雙閘極金氧半場效電晶體與電路應用
★ 空乏型功率金屬氧化物半導體場效電晶體 設計、模擬與特性分析★ 高頻氮化鋁鎵/氮化鎵高速電子遷移率電晶體佈局設計及特性分析
★ 氮化鎵電晶體 SPICE 模型建立 與反向導通特性分析★ 加強型氮化鎵電晶體之閘極電流與電容研究和長時間測量分析
★ 新型加強型氮化鎵高電子遷移率電晶體之電性探討★ 氮化鎵蕭特基二極體與高電子遷移率電晶體之設計與製作
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來,能源問題越來越被人們所重視,使得在對半導體元件上之功率的要求也與日俱增。相較於傳統矽基材料,氮化鎵材料由於先天的材料優勢及特性,如:高耐熱、高崩潰電壓、高電子飽和速度、優秀的壓電效應以及高電流密度,使得在高速、高功率的應用上成為極佳的選擇,尤其適合像是在汽車電子高溫高功率的環境。
本論文為了實現高速、高電壓操作之氮化鎵高電子移動率功率電晶體,利用電子束微影系統(E-Beam Writer)製作特殊結構之次微米尺寸的電晶體。並利用氮化矽鈍化層製程對元件進行鈍化(passivation)製程,以改善在氮化鎵系統所一直被詬病的表面狀態以及高頻操作時的電流崩潰現象;配合主動元件之鈍化層製程,製作被動元件,並以模擬軟體設計電路,希望將主被動元件在藍寶石基板上整合成一放大器。
摘要(英) In recent years, how to obtain a high power of semiconductor device is the major challenge in modern semiconductor application. The gallium nitride (GaN) device has outstanding electrical characteristics in comparison with silicon base device, such as temperature stability, high breakdown voltage, high electron velocity, and stronger piezoelectric effect due to nature of material properties. These advantages enable GaN HEMT to be a good candidate for high-speed, high power, and high-temperature applications.
In this thesis, we demonstrated the high speed and high power GaN HEMT fabricated with the sub-micron T-shape gate by the electron beam lithography. The additional passivation layer using the silicon nitride material on device surface reduces the surface trap effect and improve the current collapse drawback. Moreover, the passive and active components are fabricated on the same sapphire substrate for amplifier application. The passive components include resistor, capacitor, and inductor with model parameters from various sizes consideration.
關鍵字(中) ★ 氮化鎵
★ 電晶體
關鍵字(英) ★ GaN
★ HEMT
論文目次 目錄
摘要 I
英文摘要 II
第一章 緒論 1
1.1 研究動機 1
1.2 材料特性 4
1.2.1 極化效應 5
1.3 電子束微影系統 (E-beam lithography system) 12
1.3.1 電子束微影系統原理 12
1.4 論文架構 14
第二章 次微米氮化鎵高電子移導率電晶體介紹與實驗原理 15
2.1 AlGaN/GaN HEMT發展現況 15
2.1.1 AlGaN/GaN HEMT 結構與基板介紹 16
2.2 AlGaN/GaN HEMT元件製作 19
2.2.1 元件隔離製程(Mesa Isolation) 19
2.2.2 歐姆接觸金屬製程(Ohmic Contact) 19
2.2.3 T型閘極製程 21
2.2.4 金屬連接製程(Metal 1) 26
2.2.5 氮化矽鈍化層製程(Silicon Nitride Passivation) 26
2.2.6 金屬連接製程(Metal 2) 26
2. 3 結論 27
第三章 次微米氮化鎵電晶體特性量測 28
3. 1 簡介 28
3.1. 1 元件直流特性量測 28
3. 2 元件高頻特性量測與小訊號參數分析 32
3. 3 元件之功率量測 39
3.3. 1 簡介 39
3.3. 2 Load Pull 功率測結果 39
3. 4 結論 41
第四章 氮化矽鈍化層對元件特性之影響 42
4.1 簡介 42
4.2 Pulsed IV 量測 43
4.3 氮化矽鈍化層元件之直流特性與 45
4.3.1 簡介 45
4.3.2 氮化矽鈍化層元件之直流特性 45
4.4 氮化矽鈍化層對元件之高頻與功率特性影響 49
4.4.1 鈍化層元件之高頻特性分析 49
4.4.2 鈍化層元件之功率特性分析 51
4.5 結論 52
第五章 結論 53
參考文獻 55
附錄A 62
附錄B 68
B.1 簡介 68
B.2 被動元件之製作與模型建立 68
B.2.1 金屬-絕緣層-金屬電容 70
B.2.2 螺旋電感 72
B.3 微波功率放大器設計與製作 74
B.4 微波功率放大器之量測結果 78
B.5 結論 80
參考文獻 參考文獻
[1] D. Xu, T. Suemitsu, H. Yokoyama, Y. Umeda, T. Enoki, Y. Ishii “Short gate-length InAlAs/InGaAs MODFETs with asymmetry gate-recess grooves: electrochemical fabrication and performance” Solid-State Electronics, vol. 43, pp. 1527, (1999)
[2] S. J. Pearton, C. B. Vartuli, J. C. Zolper, C. Yuan, R. A. Stall “Ion implantation doping and isolation of GaN” Appl. Phys. Lett. vol. 67, pp. 1435, (1995)
[3] Shuti Li, Chuying Ouyang, “First principles study of wurtzite and zinc blende GaN: a comparison of the electronic and optical properties” Physics Letters A 336, pp.145, (2005).
[4] Wikimedia commons
[5] O. Ambacher, B. Foutz, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, A. J. Sierakowski, W. J. Schaff, and L. F. Eastman, “Tow dimension electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructure” J. Appl. Phys. vol. 87, pp.334 (2000)
[6] A. N. Broers, W. W. Molzen, J. J. Cuomo, and N. D. Wittels, “Electron beam fabrication of 80 metal structure,” Appl. Phys. Lett. vol. 29, pp.596 (1976)
[7] C. Y. Chang, G. Owen, R. F. Pease, and T. Kailath, “A computational method for the correction of proximity effect in electron-beam lithography” Proc. SPIE, vol. 1671, pp.208 (1992)
[8] O. Ambacher, “Growth and applications of Group III-nitrides” J. Phys. D31, pp.2653 (1998).
[9] M. A. Khan, Q. Chen, M. S. Shur, B. T. McDermott, J. A. Higgins, J. Burm,
W. J. Schaff, and L. F. Eastman, “ CW operation of short-channel GaN/AlGaN doped channel heterostructure field effect transistors at 10 GHz and 15 GHz,” IEEE Electron Device Lett. vol. 17, pp.584 (1996).
[10] S. C. Binari, J. M. Redwing, G. Kerlner, and W. Kruppa, “AlGaN/GaN HEMT’s grown on SiC substrates,” Electron. Lett., vol. 33, pp.242 (1997).
[11] R. Gaska, Q. Chen, J. Yang, A. Osinsky, M. A. Khan, and M. S. Shur, “High temperature performance of AlGaN/GaN HFETs on SiC substract,” IEEE Electron Device Lett. vol. 18, pp.492 (1997)
[12] Y. F. Wu, S. Keller, P. Kozodoy, B. P. Keller, P. Parish, D. Kapolnek, S. P. Denbaars, and U. K. Mishra, “Bias dependent microwave performance of AlGaN/GaN MODFET’s up to 100V,” IEEE Electorn Device Lett. vol. 18, pp.290 (1997).
[13] R. Oberhuber, G. Zankler, and P. Vogl, “Mobility of two-dimensional electrons in AlGaN/GaN modulation-doped field-effect transistors,” Appl. Phsy. Lett. vol. 73, pp.818 (1998).
[14] Y. Zhang andJ. Singh, “Charge control and mobility studies for an AlGaN/GaN high electron mobility transistor,” J. Appl. Phys. vol. 85, pp.587 (1999).
[15] B. E. Foutz, L. F. Eastman, U. V. Bhapkar, and M. S. Shur, “Comparison of high field electron transport in GaN and GaAs,” Appl. Phys. Lett. vol. 70, pp.2849 (1997).
[16] N. Q. Zhang, S. Keller, G. Parish, S. Geikmann, S. P. Denbarrs, and U. K. Mishra, “High breakdown GaN HEMT with overlapping gate structure,” IEEE Electron Device Lett. vol. 23, pp.421 (2000).
[17] Q. Chen, J. W. Yang, M. A. Khan, A. T. Ping and I. Adesida, “High transconductance AlGaN/GaN HFET’s on SiC substrates,” Electron Lett. vol. 33, pp.1413 (1997).
[18] M. Micovic, X. N. Nguycn, P. Janke, W. S. Wong, P. Hashimoto, L. M. Mc Cray and C. Nguycn, “GaN/AlGaN high electron mobility transistors with fT 110 GHz,” Electron Lett. vol. 36, pp.358 (2000).
[19] J. S. Moon, M. Micovic, P. Janke, P. Hashimoto, W. S. Wong, L. M. McCray, A. Kurdoghlian and C. Nguycn, “GaN/AlGaN HEMTs operating at 20 GHz with continuous-wave power density>6W/mm,” Electron Lett. vol. 37, pp.528 (2001)
[20] Y. F. Wu, A. Saxler, M. Moore, R. P. Smith, S. Sheppard, P. M. Chavarkar, T. Wisleder, U. K. Mishra and P. Parikh, “ 30-W/mm GaN HEMTs by field plate optimization,” IEEE Electron Device Lett. vol. 25, pp.117 (2004).
[21] U. K. Mishra, P. Parikh, Y. F. Wu, “AlGaN/GaN HEMTs : An overview of device operation and application,” Electrical & Computer Engineering Department, Engineering I, University of California, Santa Barbara.
[22] J. W. Johnson, J. Gao, K. Lucht, J. Williamson, “Material, Process, and Device Development of GaN-based HFETs on Silicon Substrate,” Nitronex Corporation, NC27606.
[23] Y. L. Lan, H. C. Lin,1 H. H. Liu, G. Y. Lee, F. Ren,Stephen J. Pearton, M. N. Chang, and Jen-Inn Chyi, “Low-resistance smooth-surface Ti/AlCr/Mo/Au n-type Ohmic contact to AlGaN/GaN heterostructures,” Appl. Phys. Lett., vol. 94, pp.243502, (2009).
[24] P. C. Chao, P. M. Smith, S. C. Palmateer, J. C. M. Hwang, “Electron-beam fabrication of GaAs low-noise MESFET’s using a new trilayer resist technique,” IEEE Trans. Electron Devices, vol. 32, pp.1042, (1985).
[25] T. Enoki, Y. Ishii, T. Tamamura, “ T-gate process and delay time analysis for sub-1/4-μm-gate InAlAs/InGaAs HEMT's” Proc. of 3rd Int. Conf. Indium Phosphide and Related Materials, Cardiff, U.K., pp. 371, 1991.
[26] Y. Todokoro, “Double-layer resist film for submicrometer electron-beam lithography,” IEEE Trans. Electron Devices, ED-27, pp.1443, Aug (1980)
[27] 邱顯欽,“深次微米通道摻雜場效應電晶體及其微波功率放大器之應用”中央大學電機所博士班論文,(2003)
[28] L. Yang, Stephen I. Long, “New method to measure the source and drain resistance of the GaAs MESFE,” IEEE Electron Device Lett., vol. 7, pp.75 (1986)
[29] Anwar Jarnda, Günter Kompa, “A new small-signal modeling approach applied to GaN devices,” IEEE Trans. Microwave Theory Tech., vol. 53, pp.3440, Nov. (2005).
[30] 葉宗容, “矽化鎢應用於閘極金屬對元件熱穩定度以及微波射頻開關之製作與研究” 中央大學電機碩士班論文, 2003
[31] S. N. Mohammed and H. Morkoc, “Progress and prospects of group-III nitride semiconductors,” Prog. Quant. El., vol. 20, pp. 361, (1996).
[32] M. A. Khan, M. S. Shur, Q. C. Chen, and J. N. Kuznia, “Current/voltage characteristic collapse in AlGaN/GaN heterostructure insulated gate field effect transistors at high drain bias,” Electron Lett., vol. 30, pp.2175, Dec. (1994).
[33] S. C. Binari, W. Kruppa, H. B. Dietrich, G. Kelner, A. E. Wickenden, and J. A. Freitas, “Fabrication and characteristic of GaN FETs,” Solid State Electron, vol. 41, pp. 1549, Oct. (1997)
[34] P. B. Klein, J. A. Freitas, S. C. Binari, and A. E. Wickenden, “Observation of deep traps responsible for current collapse in GaN metal-semiconductor field-effect transistors,” Appl. Phys. Lett., vol. 75, pp.4016, Dec. (1999).
[35] S. C. Binari, K. Ikossi, J. A. Roussos, W. Kruppa, D. Park, H. B. Dietrich, D. D. Koleske, A. E. Wickenden, and R. L. Henry, “Trapping effects and microwave power performance in AlGaN/GaN HEMTs,” IEEE Trans. Electron Device, vol. 48, pp.465, Mar. (2001)
[36] P. B. Klein, S. C. Binari, K. Ikossi, A. E. Wickenden, D. D, Koleske, and R. L. Henry, “Current collapse and the role of carbon in AlGaN/GaN high electron mobility transistors grown by metalorganic vapor-phase epitaxy,” Appl. Phys. Lett., vol. 79, pp.3527, Nov. (2001).
[37] G. Meneghesso, A. Chini, E. Zanoni, M. Manfredi, M. Pavesi, B. Boudart and C. Gaquiere, “Diagnosis of trapping phenomena in GaN MESFETs,” IEDM Tech.Dig., pp.389, Dec. (2000).
[38] S. C. Binari, P. B. Klein and T. E. Kazior, “Trapping effect in GaN and SiC microwave FETs,” Proc. IEEE, vol. 90, pp.1048, Jun. (2002).
[39] W. Kruppa, S. C. Binari, and K. Doverspike, “Low-frequency dispersion characteristics of GaN HFETs” Electron. Lett., vol. 31, pp.1951, Oct. (1995).
[40] B. M. Green, K. K. Chu, E. M. Chumbes, J. A. Smart, J. R. Shealy and L. F. Eastman, “The effect of surface passivation on the microwave characteristics of undoped AlGaN/GaN HEMT,” IEEE Electron. Device Lett., vol. 21, pp.268, Jun. (2000).
[41] S. Arulkumaran, T. Egawa, H. Ishikawa, T. Jimbo and T. Sano, “Surface passivation effects on AlGaN/GaN high-electron-mobility transistors with SiO2, Si3N4, and silicon oxynitride,” Appl. Phys. Lett., vol. 84, pp.613, Jan. (2004).
[42] P. Javorka, J. Bernat, A. Fox, M. Marso, H. Luth and P. Kordos, “Influence of SiO2 and Si3N4 passivation on AlGaN/GaN/Si HEMT performance” Electron. Lett., vol. 39, pp.1155, Jul. (2003).
[43] S. Arulkumaran, T. Egawa, H. Ishikawa, T. Jimbo and M. Umeno, “Investigation of SiO2/n-GaN and Si3N4/n-GaN insulator semiconductor interfaces with low interface state density,” Appl. Phys. Lett., vol. 73, pp.809, (1998).
[44] W. Lu, V. Kumar, R. Schwindt, E. Piner and I. Adesida, “A comparative study of surface passivation on AlGaN/GaN HEMTs,” Solid-State Electron., vol. 46, pp.1441, (2002).
[45] A. V. Vertiachikh, L. F. Eastman, W. J. Schaff and T. Prunty, “Effect of surface passivation of AlGaN/GaN heterostructure field-effect transistor” Electron Lett., vol. 38, pp.388, (2002).
[46] T. Kikkawa, M. Nagahara, N. Okamoto, Y. Tateno, Y. Yamaguchi, N. Hara, K. Joshin, and P. M. Asbeck, “Surface charge controlled AlGaN/GaN power HEMT without current collapse and gm dispersion,” IEDM Tech. Dig., 693, (2003).
[47] S. Arulkumaran, T.Egawa, H. Ishikawa, and T. Jimbo, “Surface passivation effects on AlGaN/GaN high-electron-mobility transistors with SiO2, Si3N4, and silicon oxynitride,” Appl. Phys. Lett., vol. 84, pp.613, (2004).
[48] Jong-Soo Lee, A. Vescan, A. Wieszt, R. Dietrich, H. Leier and Yong-Se Kwon, “Small signal and power measurements of AlGaN/GaN HEMT with SiN passivation,” Electronics Lett., vol. 37, pp.130, Jan (2001)
[49] Xin Cao, Stephen Thoms, Douglas Macintyre, Helen McLelland, Euan Boyd, Khaled Elgaid, Richard Hill, Colin R. Stanley, Iain G. Thayne, “Fabrication and performance of 50 nm T-gate for InP high electron mobility transistors,” Microelectronic Engineering vol. 73, pp.818 (2004)
指導教授 辛裕明、詹益仁、林恒光
(Yue-ming Hsin、Yi-jen Chan、Heng-kuang Lin)
審核日期 2009-7-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明