博碩士論文 965201095 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:37 、訪客IP:3.145.38.117
姓名 邱天成(Tian-cheng Chiu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 利用經驗模態分解法萃取聽覺誘發腦磁波訊號
(Extraction of Auditory Evoked Fields in MEG data using Empirical Mode Decomposition)
相關論文
★ 使用梳狀濾波器於相位編碼之穩態視覺誘發電位腦波人機介面★ 應用電激發光元件於穩態視覺誘發電位之腦波人機介面判斷
★ 智慧型手機之即時生理顯示裝置研製★ 多頻相位編碼之閃光視覺誘發電位驅動大腦人機介面
★ 以經驗模態分解法分析穩態視覺誘發電位之大腦人機界面★ 明暗閃爍視覺誘發電位於遙控器之應用
★ 使用整體經驗模態分解法進行穩態視覺誘發電位腦波遙控車即時控制★ 使用模糊理論於穩態視覺誘發之腦波人機介面判斷
★ 利用正向模型設計空間濾波器應用於視覺誘發電位之大腦人機介面之雜訊消除★ 智慧型心電圖遠端監控系統
★ 使用隱馬可夫模型於穩態視覺誘發之腦波人機介面判斷 與其腦波控制遙控車應用★ 使用類神經網路於肢體肌電訊號進行人體關節角度預測
★ 使用等階集合法與影像不均勻度修正於手指靜脈血管影像切割★ 應用小波編碼於多通道生理訊號傳輸
★ 結合高斯混合模型與最大期望值方法於相位編碼視覺腦波人機介面之目標偵測★ 利用經驗模態分解法於耳鳴病患之腦磁波穩態聽覺誘發磁場萃取
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 聽性穩態磁場(Steady-State Auditory Evoked Field, SSAEF)是利用連續穩態的聲音刺激,大腦聽覺皮質層所誘發出來的反應磁場,此誘發磁場可做為探討大腦聽覺功能區的指標。然而,聽性穩態磁場的反應強度偏低且帶有許多雜訊,為了提高其訊雜比,我們使用經驗模態分解法(Empirical Mode Decomposition, EMD)來處理此訊號,這項技術能可適性的將聽性誘發磁場萃取出來,以得到大腦聽覺皮質層的活化資訊。
本研究開發以經驗模態分解法為基礎的大腦聽覺皮質誘發磁場分析技術,並應用此技術於耳鳴醫學(tinnitus)的應用探討。臨床上耳鳴患者目前缺乏客觀的診斷及療效評估工具,且過去文獻研究於聽覺損失患者,發現了相異於正常人的腦波聽覺誘發電位,可見耳鳴並非單純的周邊聽神經問題,可能與大腦半球間相互抑制作用降低,以致雙耳交互作用失調產生的病灶有關,我們可經由觸發大腦聽覺皮質層所誘發的反應磁場,加以分析研判之。首先以腦磁圖(Magnetoencephalography, MEG)收集耳鳴患者(實驗組)與健康受試者(對照組)的聽性誘發反應數據,再以經驗模態分解法(EMD)萃取其訊號,最後使用偶極子磁場源進行波源定位(source modeling),以達到最佳的聽性誘發反應用於耳鳴醫學研究的完整呈現。
希望了解大腦聽覺皮質層之功能重組,及可能的預後參考價值。期待能在耳鳴臨床研究之腦訊號技術平台,提供診斷與療效評估工具之發展,有更進一步的貢獻。
摘要(英) Steady-state auditory evoked field (SSAEF) is a technique which utilizes magnetoencephalography (MEG) to measure the magneto-physiological responses evoked by repetitive auditory stimuli. SSAEFs have been widely used in clinical application and suggested as a clinical idex for diagnosing the function of auditory cortex in human brain. Nevertheless, the SSVEP is susceptible to be affected by task-irrelevant noise and may sometimes deteriorate the correctness in clinical diagnoses. Accordingly, this study aims to develop an empirical mode decomposition (EMD) – based technique to extract SSAEPs so that the signal-to-noise ratio (SNR) of SSAEP can be greatly improved. The efficacy of the proposed method has been applied to study clinical tinnitus patients.
The genesis of tinnitus is still unclear and lacks of a reliably objective procedure for diagnosis in clinics. Recent studies have shown the auditory evoked potential / field (AEP/AEF) in patients with tinnitus are deviant from normal subjects. These evidences imply the pathogenesis of tinnitus might be associated with the central auditory plasticity, i.e., the functional reorganization of the auditory cortex, rather than the dysfunction of peripheral auditory sensory networks. In this study, we apply the concurrent measurements of auditory steady-state fields (SSAEFs) to investigate the profound signal processing of the interhemispheric inhibition and binaural interaction. With the localization of auditory-related neural sources by applying electric current dipole (ECD), the proposed EMD-based method may be a powerful tool to shed light on studying the development of tinnitus.
關鍵字(中) ★ 腦磁圖
★ 波源定位
★ 耳鳴
★ 聽性穩態磁場
★ 經驗模態分解法
關鍵字(英) ★ source modeling
★ magnetoencephalography(MEG)
★ tinnitus
★ empirical mode decomposition(EMD)
★ steady-state auditory evoked fields(SSAEFs)
論文目次 摘要.....................................................................................................................................I
Abstract..............................................................................................................................II
誌謝..................................................................................................................................III
目錄..................................................................................................................................IV
圖目錄..............................................................................................................................VI
表目錄............................................................................................................................VIII
第一章 緒論......................................................................................................................1
1.1 聽覺生理介紹.............................................................................................................1
1.2 耳鳴.............................................................................................................................2
1.3 聽性穩態磁場.............................................................................................................3
1.4 研究動機.....................................................................................................................4
第二章 材料與方法..........................................................................................................5
2.1 聲音刺激介紹.............................................................................................................5
2.1.1 純音刺激..........................................................................................................5
2.1.2 穩態聲音刺激..................................................................................................5
2.1.3 聲音輸出.........................................................................................................9
2.2 實驗方法...................................................................................................................10
2.2.1 受試者............................................................................................................10
2.2.2 實驗設計........................................................................................................11
第三章 訊號分析處理....................................................................................................13
3.1 聽性誘發反應...........................................................................................................13
3.1.1 純音刺激........................................................................................................13
3.1.2 穩態聲音刺激................................................................................................15
3.2 訊號分析流程...........................................................................................................18
3.3 經驗模態分解法.......................................................................................................19
3.3.1 瞬時頻率........................................................................................................19
3.3.2 內建模態函數................................................................................................20
3.3.3 經驗模態分解法............................................................................................21
3.3.4 經驗模態分解法用於聽性誘發訊號............................................................24
3.4 疊加平均...................................................................................................................30
3.5 波源定位...................................................................................................................33
3.6 偶極子磁場源定位結果...........................................................................................35
第四章 比較與分析........................................................................................................39
4.1 偶極強度...................................................................................................................39
4.1.1 對照組:健康受試者 共7名(1~7).............................................................39
4.1.2 實驗組:右側耳鳴患者 共7名(1~7).........................................................40
4.1.3 實驗組:左側耳鳴患者 共5名(1~5).........................................................41
4.2 結果分析……...........................................................................................................42
第五章 結論與未來展望................................................................................................44
5-1 結論..........................................................................................................................44
5-2 未來展望..................................................................................................................45
參考文獻.........................................................................................................................46
參考文獻 [1] http://www.ling.fju.edu.tw/hearing/hearing-introduction.htm聽覺系統
[2] S. A. Mitelman, A. M. Brickman, and L. Shihabuddin, Correlations between MRI assessed volumes of the thalamus and cortical Brodmann's areas in schizophrenia. Schizophr, 2005. 75: p. 265-81.
[3] http://140.136.247.242/~hearing/99hearing/neurosystem.html神經生理及神經解剖是神經科學的兩大基石
[4] J. L. Stouffer, R. S. Tyler, Characterization of tinnitus by tinnitus patients. Journal of Speech and Hearing Disorder, 1990. 55: p. 439~453.
[5] A. R. Samuel, R. J. Salvi, R. F. Burkard, M. L. Coad, D. S. Wack, P. J. Galantowicz, and A. H. Lockwood, Brain imaging of the effect of lidocaine on tinnitus. Hearing Research, 2002. 171: p. 43~50.
[6] http://ibru.vghtpe.gov.tw/chinese/eeg.htm台北榮民總醫院教學研究部整合性腦功能實驗室
[7] N. Fujiki, V. J. ki, and R. Hari, Neuromagnetic Responses to Frequency-Tagged Sounds: A New Method to Follow Inputs from Each Ear to the Human Auditory Cortex during Binaural Hearing. The Journal of Neuroscience, 2002. 22: p. 1-4.
[8] K. i. Kaneko, N. Fujiki, and R. Hari, Binaural interaction in the human auditory cortex revealed by neuromagnetic frequency tagging: no effect of stimulus intensity. Hearing Research, 2003. 183: p. 1-6.
[9] F. Grandori, M. Hoke, and G. L. Romani, Auditory Evoked Magnetic Fields and Electric Potentials. Audiol, 1990. 6:p. 222–282.
[10] D. Osipova, E. Pekkonen, and J. Ahveninen, Enhanced magnetic auditory steady-state response in early Alzheimer's disease. Clinical Neurophysiology, 2006. 117: p. 1990-1995.
[11] C. Wienbruch, et al., Frequency organization of the 40-Hz auditory steady-state response in normal hearing and in tinnitus. NeuroImage, 2006. 33(1): p. 180-194.
[12] P. H. Li, et al., Healthy-Side Dominance of Cortical Neuromagnetic Responses in Sudden Hearing Loss. Annals of Neurology, 2003. 53: p. 810-815.
[13] P. H. Li, et al., Healthy-side dominance of middle- and long-latency neuromagnetic fields in idiopathic sudden sensorineural hearing loss. European Journal of Neuroscience, 2006: p. 1-10.
[14] J. C. Hsieh, et al., Loss of interhemispheric inhibition on the ipsilateral primary sensorimotor cortex in patients with brachial plexus injury: fMRI study. Annals of Neurology, 2002. 51(3): p. 381-385.
[15] J. J. Eggermont, L. E. Roberts, The neuroscience of tinnitus. Trends Neurosci, 2004. 27:p. 676-682.
[16] M. Hoke, H. Feldmann, B. Lütkenhöner, and K. Lehnertz, Objective evidence of tinnitus in auditory evoked magnetic fields. Hear Res, 1989. 37:p. 281-286.
[17] N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N. C. Yen, C. C. Tung, and H. H. Liu, The empirical mode decomposition and the Hilbert Spectrum for nonlinear and nonstationary time series analysis, Proc. Roy. Soc. London A, 1998. 454: p. 903-995.
[18] M. Cheng, X. Gao, S. Gao, Design and implementation of a brain-computer interface with high transfer rates. IEEE Transactions on Biomedical Engineering, 2002. 49(10):p. 1181-1186
[19] N. Weisz, et al., Neuromagnetic indicators of auditory cortical reorganization of tinnitus. Brain, 2005. 128: p. 2722-2731.
[20] W. Schlee, N. Weisz, O. Bertrand, T. Hartmann, and T. Elbert, Using Auditory Steady State Responses to Outline the Functional Connectivity in the Tinnitus Brain. PLoS ONE, 2008. 3(11):e3720
[21] Single-trial neuromagnetic analysis of auditory steady state responses and its application for the studies of chronic tinnitus. 2006. PD Dr. Andreas Keil
[22] C.Y. Jin, I. Ozaki, Y. Suzuki, M. Baba, and I. Hashimoto, Dynamic movement of N100m current sources in auditory evoked fields: Comparison of ipsilateral versus contralateral responses in human auditory cortex. Neuroscience research, 2008. 60(4):p. 397-405.
[23] S. Ohtomo, N. Nakasato, A. Kanno, K. Hatanaka, R. Shirane, K. Mizoi, and T. Yoshimoto, Hemispheric asymmetry of the auditory evoked N100m response in relation to the crossing point between the central sulcus and Sylvian fissure. Electroencephalogr, Clin. Neurophysiol, 1998. 108:p. 219-225.
[24] L. Cohen, Time-Frequency Analysis, Prentice-Hall, Englewood Cliffs, New Jersey, 1995.
[25] E. Bedrosian, A product theorem for Hilbert transform. Proc. of IEEE, 1963. 51:p. 868-869.
[26] N. E. Huang, M. L. Wu, S. R. Long, et al, A confidence limit for the Empirical Mode Decomposition and Hilbert spectral analysis. Proc. Roy. Soc. London A, 2003. 459: p. 2317-2345
[27] D. E. Newland, An introduction to Random Vibrations, Spectral & Wavelet Analysis. John Wiley & Sons, Inc., New York., 1993.
[28] C. Elberling, C. Bak, B. Kofoed, J. Lebech, and K. Saermark, Auditory magnetic fields from the human cerebral cortex: location and strength of an equivalent current dipole. Acta Neurol. Scand, 1982. 65:p. 553-569.
[29] B. Godey, D. Schwartz, de J. B. Graaf, P. Chauvel, C. Liégeois-Chauvel, Neuromagnetic source localization of auditory evoked fields and intracerebral evoked potentials: a comparison of data in the same patients. Clin. Neurophysiol, 2001. 112:p. 1850-1859.
指導教授 李柏磊(Po-Lei Lee) 審核日期 2009-7-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明