參考文獻 |
[1] 丁承先、石強、王永康,「向量式有限元的基本理論:(二)平面固體元分析」,國立中央大學及美國普渡大學土木系,近代工程計算論壇(2000,2001,2002)
[2] Ting, E. C., Shih, C., Wang, Y. K., “Fundamentals of a vector form intrinsic finite element: Part I. basic procedure and a plane frame element,” Journal of Mechanics, Vol. 20, No. 2, pp. 113-122, 2004.
[3] Ting, E. C., Shih, C., Wang, Y. K., “Fundamentals of a vector form intrinsic finite element︰PartII .plane solid elements , “Journal of Mechanics”, Vol. 20 ,No. 2, pp. 123-321, 2004.
[4] Shih, C., Wang, Y. K., Ting, E. C., “Fundamentals of a vector form intrinsic finite element: Part III. Convected material frame and examples,” Journal of Mechanics, Vol. 20, No. 2, pp. 133-143, 2004.
[5] Shi, G. H.,“Discontinuous deformation analysis︰a new numerical model for the statics and dynamics of block system ”,PH.D. Dissertarion, University of California ,Berkeley,CA , 1988.
[6] Shi, G. H., Goodman, R. E.,“Two dimensional discontinuous deformation analysis”, International Journal for Numerical and Analytical Methods in Geomechanics, vol. 9, pp. 541-556, 1985.
[7] Koo, C. Y., Chern, J. C.,“Modification of DDA method rigid block problems”,Int. J. RockMech.Min.Sci., Vol. 35 , No. 6, pp. 683-693, 1998.
[8] Lanru Jing ,“Formulation of discontinuous deformation analysis (DDA)— an implicit discrete element model for block systems”, Engineering Geology, Vol. 49, pp. 371-381, 1998.
[9] Chan, S. K. , Tuba, I. S.,“A finite element method for contact problems of solid bodies:part I . theory and validation”,Int. J. mech. Sci., Vol. 13, pp. 615-625, 1971.
[10] Chan, S. K. , Tuba, I. S., “A finite element method for contact problems of solid bodies:part II. application to turbine blade fastenings ”,Int.J.mech.Sci., Vol. 13, pp. 627-639, 1971.
[11] Simo, J. C., Wriggers , P. and Taylor, R. L.,“A perturbed Lagrangian formulation for the finite element solution of contact problems”, Comp. Meth. Appl. Mech. Eng., Vol. 50, pp. 163-180 , 1985.
[12] Hallquist, J. O., Goudreau, G. L. and Benson, D. J., “Sliding interfaces with contact-impact in large-scale Lagrangian computations”, Comp. Methods Appl. Mech. Eng., Vol. 51, pp. 107-137, 1985.
[13] Benson, D. J., Hallquist, J. O., “A single surface contact algorithm for the post-buckling analysis of shell structures”, Comput. Appl. Mech. Eng., Vol. 78, pp. 141-163, 1990.
[14] Belytschko, T., Yeh, I. S., “The splitting pinball method for contact-impact problems”, Comput. Appl. Mech. Eng.,Vol. 105, pp. 375-393, 1993.
[15] Zhong, Z. H., Nilsson, L., “A contact searching algorithm for general contact problems”, Computers & Structures, Vol.33, No.1,pp.197-209,1989.
[16] Zhong, Z. H., Nilsson, L., “A contact searching algorithm for general 3-d contact-impact problems”,Computers & Structures, Vol. 34, No. 2, pp. 327-335, 1989.
[17] Zhong, Z. H., Nilsson, L., “Automatic contact searching algorithm for dynamic finite element analysis”Computers & Srrucrures , Vol. 52, No. 2, pp. 187-197, 1994.
[18] Belytschko, T., Lin, J. I., “A three-dimensional impact-penetration algorithm with erosion”,Computers & Structures, Vol. 25, No. 1, pp. 95-104 , 1987.
[19] Belytschko, T., Near, M. O., “Contact-impact by the pinball algorithm with penalty and Lagrangian methods”, Int. J.Num. Meth. Eng., Vol. 31, pp. 547-572, 1991.
[20] Taylor, R. L., Papadopoulos, P., “On a finite element method for dynamic contact/impact problems”, Int. J. Num. Meth. Eng., Vol. 36, pp. 2123-2140, 1993.
[21] Carpenter, N. J., Taylor, R. L., Katona, M. G., “Lagrange constraints for transient finite element surface contact”,Int. J. Num. Meth. Eng., Vol. 32, pp. 103-128, 1991.
[22] Laursen, T. A., Chawla, V., “Design of energy conserving algorithms for frictionless dynamic contact problems”, Int. J. Num. Meth. Eng., Vol. 40, pp. 863-886, 1997.
[23] Wriggers, P., Van, T. V., Stein, E., “Finite element formulation of Large deformation impact-contact problems with friction”, Computers & Structures, Vol. 37, No. 3, pp. 319-331, 1990.
[24] Yang, T.Y., Lianis, G., “Large displacement analysis of Viscoelastic beams and frames by the finite-element method”, J. Appl. Mech., vol. 74, pp. 635-640 , 1974.
[25] Bathe, K.J.,“Finite element formulations for large deformation dynamic analysis”, Int. J. Numer. Meth.Engng., Vol. 9, pp. 353-386, 1975.
[26] Pai, P.F., Palazotto, A.N., “Large-deformation analysis of flexible”,Int. J. Solids Structures, Vol. 33, No. 9,pp. 1335-1353 , 1995.
[27] Ren, W. X., Tan, X., Zheng, Z., “Nonlinear analysis of plane Frames using rigid body-spring discrete element method”, Comput. Struct., Vol. 71, pp. 105-119 , 1999.
[28] Pai, P. F., Palazotto, A. N., “Large deformation analysis of flexible beams”, Int. J. Solids Structures ,Vol. 3, No. 9, pp. 1335-1353 , 1996.
[29] Rice, D. L., Ting, E. C., “Large displacement transient analysis of flexible structures”, Int. J. Numer. Meth. Engrg. , Vol. 36, pp. 1541-1562 , 1993.
[30] Pai P. F., Anderson, T. J., Wheater, E. A., “Large deformation tests and total Lagrangian finite element analysis of flexible beams”, Int. J. Solid Structures, Vol. 37, pp. 2951-2980 , 2000.
[31] 莊清鏘,「二維可變形多體系統的動、靜態分析」,博士論文,國立中央大學土木工程研究所,中壢,1999。
[32] Cheng, Y. M. , “Advancements and Improvement in Discontinuous deformation Analysis”, Computers and Geotechnics, Vol. 22, No. 2, pp. 153-163, 1998.
[33] Antonio Munjiza ,The combined finite-discrete element method , John Wiley & Sons Ltd ,England, 2004.
[34] S. Mohammadi , Discontinuum mechanics using finite and discrete elements , Wit Press ,UK, 2003.
[35] 賴建豪,「向量式有限元素法於平面構架幾何非線性之應用」,碩士論文,私立中原大學 土木工程研究所,中壢,2003。
[36] 吳思穎,「向量式剛架有限元於二維結構之大變位與接觸行為分析」,碩士論文,國立中央大學 土木工程研究所,中壢,2005。 |