博碩士論文 93322021 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:52.14.147.215
姓名 張家銘(Chia-Min Chang)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 以熱探針法量測大地材料熱傳導係數之適用性
(The study of measuring the thermal conductivity of geotechnical materials with thermal probe method.)
相關論文
★ 花蓮溪安山岩含量之悲極效應研究★ 層狀岩盤之承載力
★ 海岸山脈安山岩之鹼-骨材反應特性及抑制方法★ 集集大地震罹難者居住建築物特性調查分析
★ 岩石三軸室應變量測改進★ 傾斜互層地層之承載力分析
★ 花蓮溪安山岩骨材之鹼反應行為及抑制方法★ 混成岩模型試體製作與體積比量測
★ 台灣骨材鹼反應潛能資料庫建置★ 平台式掃描器在影像擷取及長度量測之應用
★ 溫度及鹽水濃度對壓實膨潤土回脹性質之影響★ 鹼骨材反應引致之破裂行為
★ 巨觀等向性混成岩製作表面影像與力學性質★ 膨潤土與花崗岩碎石混合材料之熱傳導係數
★ 邊坡上基礎承載力之數值分析★ 鹼-骨材反應引致裂縫之量測與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 熱探針量測法為量測熱傳導係數方法之一,其具有完整理論基礎及使用上的方便性,在實驗室及現地量測中被廣泛應用。本文針對熱探針量測法使用上可能造成誤差之處(鑽孔界面、導熱泥填充、試體尺寸等問題)逐一探討研究,以實驗結果配合統計分析,嘗試建立一套標準之量測步驟。
實驗結果顯示,在熱探針直接埋入試體條件下,具有最好的量測結果;而鑽孔後會造成量測值下降3%~7%,隨淨空值愈大,量測值變異性也隨之增加,因此當岩石在鑽孔條件下量測時,建議縮小淨空值與重覆量測可獲得較準確之量測值。
另就導熱泥使用、電壓輸入量、試體尺寸等問題做系列實驗,由實驗結果建議,導熱泥使用熱傳導係數3W/mK;電壓輸入量9~15Volt;試體寬徑比12.5以上,可得到穩定且準確之量測值。
大地材料量測結果可知,於類岩材料中,熱傳係數值與波速具有相當高之相關係數;但在天然岩石中,超音波量測可反映出岩石孔隙率多寡,但對石英含量高且多孔隙之岩石,則有過大的誤差產生。故超音波在熱傳導係數應用上,應配合岩石礦物組成分析;橫向等向性岩石中,波速與熱傳導係數皆會受到與層面夾角不同而有所變化,二者間關係仍需更多試驗來證明之。
摘要(英) Thermal probe method is one of the ways to measure thermal conductivity which are applied comprehensively in laboratory and in-situ measurement for the complete rationale and convenience in uses. In this article, some factors, including the clearance between the thermal probe and drilled hole, type of thermal grease, and the relative size of the specimen, that influence the quality of thermal conductivity measurement with thermal probe are investigated. Standard measuring procedures by the implementation of test result and statistical analysis are prepared.
The experimental result showed that method with thermal probe directly buried inside the specimen delivers the best result. However, the value of thermal conductivity will be dropped 3%~7% with the traditional drilled hole, and the variability of result would dominate as the clearance increased. Reducing the clearance and repeating measurement are suggested in order to obtain the more accurate test results.
On the suggestions for the thermal grease uses, voltage input value and relative size of the specimen, experimental result shows that using thermal grease with 3W/mK, keeping the value of voltage input at 9~15Volt, and the aspect ratio of the specimen up to 12.5, delivers the stable and accurate test value.
For the geotechnical materials, the thermal conductivity has the best correlation with P-wave velocity in artificial rocks. As for isotropic rocks, the P-wave velocity can reflect the quantity of the rock porosity, but may produce oversized erroneous in rock with rich quartz content and porous. Thus the P-wave velocity waves might cooperate with rock-forming minerals to establish the relationship between thermal conductivity and P-wave velocity. However, in transversely isotropic rock, the wave velocity and thermal conductivity vary with the inclined angle of the bedding plane. Further research on the relationship between thermal conductivity and P-wave velocity is suggested.
關鍵字(中) ★ 熱傳導係數
★ 超音波速
★ 熱探針量測法
關鍵字(英) ★ thermal conductivity
★ thermal probe method
★ P-wave velocity
論文目次 摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 VII
表目錄 X
第一章 緒論1
1.1 研究動機 1
1.2 研究方法 1
1.3 論文架構 1
第二章 文獻回顧 3
2.1 大地材料基本熱學理論 3
2.2 熱傳導係數之定義 3
2.3 熱傳導係數之量測方法 5
2.3.1 熱探針法 5
2.3.2 熱探針連續量測法 8
2.3.4 熱流計法 10
2.3.5 分割棒法 10
2.3.6 各量測方法比較 11
2.4 熱傳導係數預測模式 12
2.4.1 N相材料之串聯與並聯 12
2.4.2 De Vries and Campbell 模式 13
2.4.3 岩石熱傳導係數預測模式 15
2.5 熱探針量測法之相關研究 18
2.5.1 熱探針法誤差來源探討 18
2.5.2 熱料探針量測法應用於岩石熱傳導係數量測 20
2.6 岩石熱學性質相關參數研究 22
2.7 異向性岩石熱傳導性質 25
第三章 實驗規劃 27
3.1 熱探針量測法 27
3.1.1 熱探棒 27
3.1.2 資料擷取系統 29
3.1.3 電源供應器 30
3.2 熱探針連續量測法 31
3.2.1 試驗模具 31
3.2.2 試驗步驟 32
3.3 試體尺寸試驗 36
3.3.1 試驗方法 36
3.3.2 試驗步驟 37
3.4 導熱泥試驗 38
3.4.1 導熱泥填充方式 38
3.4.2 不同導熱泥對量測值之影響 41
3.5 輸入電壓對熱傳導係數之影響 42
3.5.1 實驗方法 42
3.5.2 實驗步驟 42
3.6 淨空對熱傳導係數量測值之影響 44
3.6.1 試驗材料及儀器 45
3.6.2 試驗步驟 45
3.7 類岩材料熱傳導性質試驗 47
3.7.1 試驗材料及儀器 47
3.7.2 試驗步驟 49
3.8岩石熱傳導性質試驗 50
3.8.1 岩石種類 50
3.8.2 試驗儀器 52
3.8.3 試驗步驟 52
3.9 與熱傳導係數相關之各參數實驗 53
3.9.1 超音波波速量測 53
3.9.2 孔隙率試驗 54
第四章 實驗結果與討論 55
4.1 試體尺寸對熱傳導係數量測值之影響 55
4.2 導熱泥對熱傳導係數量測值之影響 57
4.2.1 未填充導熱泥之量測結果 57
4.2.2 填充不同導熱泥量測結果 60
4.2.3 導熱泥填充方式不同對量測值之影響 63
4.3 輸入電壓對熱傳導係數量測值之影響 66
4.3.1 石蠟試體在不同電壓值量測結果 66
4.3.2 硬固水泥試體在不同電壓量測結果 69
4.4 淨空對量測熱傳導係數量測值之影響 72
4.4.1 石蠟試體量測結果 72
4.4.2 石蠟實驗結果統計分析 73
4.4.3 膨潤土量測結果 77
4.4.4 硬固水泥試體量測結果 79
4.4.5 不同材料量測結果與前人研究結果比較 82
4.5 類岩材料熱傳導係數與各參數之關係 83
4.6 乾砂熱傳導係數量測結果 86
4.7 天然岩石熱傳導係數量測 89
4.8 橫向等向性岩石熱傳導係數量測 94
4.8.1 熱流在橫向等向性岩石中擴散方程式推導 94
4.8.2 層狀岩石熱傳導係數量測結果 96
4.8.3 層狀岩石熱傳導係數與波速之關係 97
第五章 結論與建議 100
5.1 結論 100
5.2 建議 101
參考文獻 102
參考文獻 (1)田永銘、朱正安、張大猷,「緩衝材料熱傳導係數之量測與預測模式」,2004岩盤工程研討會論文集,台北,第694-701頁 (2004)。
(2)田永銘、朱正安、張家銘、鐘富誠、陳婕,「熱探針量測法應用於大地材料之適用性」,2006岩盤工程研討會論文集,台南,第669-678頁 (2006)。
(3)林俊宏,「粉體在不同含水量及乾單位重下之熱傳導係數」,碩士論文,中央大學土木工程研究所,中壢 (2006)。
(4)林惠玲、陳正倉,應用統計學,雙葉書廊有限公司,台北 (2002)。
(5)洪如江,初等工程地質學大綱,財團法人地工技術研究發展基金會,台北 (1998)。
(6)胡廷秉,「超音波儀器之組裝及異向性岩石之超音波特性」,碩士論文,國立交通大學土木工程研究所,新竹 (1994)。
(7)徐鐵良,地質與工程,科技圖書股份有限公司,台北 (1992)。
(8)陳正宏,台灣之火成岩,經濟部中央地質調查所,台北 (1990)。
(9)陳肇夏,台灣的變質岩,經濟部中央地質調查所,台北 (1990)。
(10)陳其瑞,台灣之大理石,經濟部中央地質調查所,台北 (1990)。
(11)張大猷,「熱探針連續量測法應用於緩衝材料熱傳導係數之量測與分析」,碩士論文,中央大學土木工程研究所,中壢 (2004)。
(12)劉哲明,「 混成岩模型試體製作與體積比量測」,碩士論文,中央大學土木工程學系,中壢 (2002)。
(13)劉俊志,「膨潤土與花崗岩碎石混合材料之熱傳導係數」,碩士論文,國立中央大學土木工程研究所,中壢 (2003)。
(14)Abdou, A. A. and Budaiwi, I. M., "Comparison of thermal conductivity measurements of building insulation materials under various operating temperatures," Journal of Building Physics, Vol. 29, No. 2, pp. 171-184 (2005).
(15)Abdulagatov, I. M., Emirov, S. N., Abdulagatova, Z. Z., and Askerov, S. Y., "Effect of pressure and temperature on the thermal conductivity of rocks," Journal of Chemical and Engineering Data, Vol. 51, No. 1, pp. 22-33 (2006).
(16)Adnan, H. N., Wave Propagation in Layered Ansiotropic Media, North-Holland, U.S.A. (1996).
(17)ASTM, "ASTM D5334:Standard Test Method for Determination of Thermal Conductivity of Soil and Soft Rock by Thermal Needle Probe Procedure," Annual Book of ASTM Standards, Vol. 0409, No. (2000).
(18)Batty, W. J., O'Callaghan, P. W., and Probert, S. D., "Assessment of the thermal-probe technique for rapid, accurate measurements of effective thermal conductivities," Applied Energy, Vol. 16, No. 2, pp. 83-113 (1984).
(19)Bouguerra, A., Laurent, J. P., Goual, M. S., and Queneudec, M., "Measurement of the thermal conductivity of solid aggregates using the transient plane source technique," Journal of Physics D: Applied Physics, Vol. 30, No. 20, pp. 2900-2904 (1997).
(20)Chandrakanthi, M., Mehrotra, A. K., and Hettiaratchi, J. P. A., "Thermal conductivity of leaf compost used in biofilters: An experimental and theoretical investigation," Environmental Pollution, Vol. 136, No. 1, pp. 167-174 (2005).
(21)Clauser, C., Huenges, E., Thermal conductivity of rock and minerals In:AGU Reference Shelf 3 Rock Physics and Phase Relations. A Handbook of Physical Constants. pp. 105-125 (1995)
(22)Cote, J. and Konrad, J. M., "A generalized thermal conductivity model for soils and construction materials," Canadian Geotechnical Journal, Vol. 42, No. 2, pp. 443-458 (2005).
(23)David, C., Menendez, B., and Darot, M., "Influence of stress-induced and thermal cracking on physical properties and microstructure of La Peyratte granite," International Journal of Rock Mechanics and Mining Sciences, Vol. 36, No. 4, pp. 433-448 (1999).
(24)Demirci, A., Gorgulu, K., and Duruturk, Y. S., "Thermal conductivity of rocks and its variation with uniaxial and triaxial stress," International Journal of Rock Mechanics and Mining Sciences, Vol. 41, No. 7, pp. 1133-1138 (2004).
(25)Dewynter, V., Rougeault, S., Boussoir, J., Roussel, N., Ferdinand, P., and Wileveau, Y., "Instrumentation of borehole with fiber bragg grating thermal probes: Study of the geothermic behaviour of rocks," Bruges, Belgium, 2005.
(26)Faronki, O. T., Thermal Properties of Soils, Series on Rock and Soil Mechanics, Vol. 11, Trans. Tech. Publication, Germany (1986).
(27)Gunn, D. A., Jones, L. D., Raines, M. G., Entwisle, D. C., and Hobbs, P. R. N., "Laboratory measurement and correction of thermal properties for application to the rock mass," Geotechnical and Geological Engineering, Vol. 23, No. 6, pp. 773-791 (2005).
(28)Gustavsson, J.S., Gustavsson, M., Gustafsson, S.E., "On the Use of the Hot Disk Thermal Constants Analyser for Measuring the Thermal Conductivity of Thin Samples of Electrically Insulating Materials, " Proc. 24th Int. Thermal Conductivity Conf., Pittsburgh, USA (1997).
(29)Huenges, E., Burkhardt, H., Erbas, K., "Thermal Conductivity Profile of the KTB Pilot Corehole, " Scientific Drilling, Vol. 1, pp.224-230 (1990).
(30)Hartmann, A., Rath, V., and Clauser, C., "Thermal conductivity from core and well log data," International Journal of Rock Mechanics and Mining Sciences, Vol. 42, No. 7-8 SPEC ISS, pp. 1042-1055 (2005).
(31)Krishnaiah, S., Singh, D. N., and Jadhav, G. N., "A methodology for determining thermal properties of rocks," International Journal of Rock Mechanics and Mining Sciences, Vol. 41, No. 5, pp. 877-882 (2004).
(32)Luo, M., Wood, J. R., and Cathles, L. M., "Prediction of thermal conductivity in reservoir rocks using fabric theory," Journal of Applied Geophysics, Vol. 32, No. 4, pp. 321-334 (1994).
(33)Maqsood, A., Kamran, K., and Gul, I. H., "Prediction of thermal conductivity of granite rocks from porosity and density data at normal temperature and pressure: In situ thermal conductivity measurements," Journal of Physics D: Applied Physics, Vol. 37, No. 24, pp. 3396-3401 (2004).
(34)Milun, S., Kilic, T., and Bego, O., "Measurement of soil thermal properties by spherical probe," IEEE Transactions on Instrumentation and Measurement, Vol. 54, No. 3, pp. 1219-1226 (2005).
(35)Naidu, A. D. and Singh, D. N., "Field probe for measuring thermal resistivity of soils," Journal of Geotechnical and Geoenvironmental Engineering, Vol. 130, No. 2, pp. 213-216 (2004).
(36)Nusier, O. K. and Abu-Hamdeh, N. H., "Laboratory techniques to evaluate thermal conductivity for some soils," Heat and Mass Transfer/Waerme- und Stoffuebertragung, Vol. 39, No. 2, pp. 119-123 (2003).
(37)Özkahraman, H. T., Selver, R., and Isk, E. C., "Determination of the thermal conductivity of rock from P-wave velocity," International Journal of Rock Mechanics and Mining Sciences, Vol. 41, No. 4, pp. 703-708 (2004).
(38)Popov, Y. A., Pribnow, D. F. C., Sass, J. H., Williams, C. F., and Burkhardt, H., "Characterization of rock thermal conductivity by high-resolution optical scanning," Geothermics, Vol. 28, No. 2, pp. 253-276 (1999).
(39)Seipold, U. and Raab, S., "Method to measure thermal conductivity and thermal diffusivity under pore and confining pressure," Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, Vol. 25, No. 2, pp. 183-187 (2000).
(40)Sevostianov, I. and Kachanov, M., "Connection between elastic moduli and thermal conductivities of anisotropic short fiber reinforced thermoplastics: Theory and experimental verification," Materials Science and Engineering A, Vol. 360, No. 1-2, pp. 339-344 (2003).
(41)Shabbir, G., Maqsood, A., and Majid, C. A., "Thermophysical properties of consolidated porous rocks," Journal of Physics D: Applied Physics, Vol. 33, No. 6, pp. 658-661 (2000).
(42)Shabbir, G., Maqsood, M., Maqsood, A., Izhar Ul, H., Amin, N., and Gustafsson, S. E., "Thermophysical properties of rock marbles as a function of temperature," Journal of Physics D: Applied Physics, Vol. 26, No. 10, pp. 1576-1580 (1993).
(43)Tarnawski, V. R. and Leong, W. H., "Thermal conductivity of soils at very low moisture content and moderate temperatures," Transport in Porous Media, Vol. 41, No. 2, pp. 137-147 (2000).
(44)Tavman, I. H., "Effective thermal conductivity of granular porous materials," International Communications in Heat and Mass Transfer, Vol. 23, No. 2, pp. 169-176 (1996).
(45)Troschke, B. and Burkhardt, H., "Thermal conductivity models for two-phase systems," Physics and Chemistry of the Earth, Vol. 23, No. 3, pp. 351-355 (1998).
(46)Tuomas, F. and Gustafsson, A. M., "Evaluation of ground thermal conductivity from drilling data," International Journal of Rock Mechanics and Mining Sciences, Vol. 41, No. SUPPL 1, pp. 1-08 (2004).
(47)Waite, W. F., deMartin, B. J., Kirby, S. H., Pinkston, J., and Ruppel, C. D., "Thermal conductivity measurements in porous mixtures of methane hydrate and quartz sand," Geophysical Research Letters, Vol. 29, No. 24, pp. 82-100 (2002).
(48)Woodside, W. and Messmer, J. H., "Thermal conductivity of porous media II. Consolidated Rocks," Journal of Applied Physics, Vol. 32, No. 9, pp. 1699-1706 (1961).
指導教授 田永銘(Yong-Ming Tien) 審核日期 2006-7-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明