博碩士論文 93322035 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:69 、訪客IP:3.146.152.196
姓名 黃文璽(Wen-Shi Huang)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 自承式雙排鋼軌樁擋土系統穩定性之研究
相關論文
★ 砂土層中隧道開挖引致之地盤沉陷與破壞機制及對既存基樁之影響★ 以離心模型試驗探討逆斷層作用下單樁與土壤互制反應
★ 攝影測量在離心模擬試驗之應用-以離心隧道模型之地表沉陷量量測為例★ 沉箱式碼頭受震反應的數值分析
★ 軟土隧道襯砌應力與地盤變位之數值分析★ 沉箱碼頭受震反應及側向位移分析
★ 潛盾隧道開挖面穩定與周圍土壓力之離心模擬★ 地理資訊系統應用於員林地區液化災損及復舊調查之研究
★ 黏性土層中隧道開挖引致之地盤沉陷及破壞機制★ 砂土層中通隧引致之地盤變位及其對既存基樁的影響
★ 既存隧道周圍土壓力受鄰近新挖隧道的影響★ 以攝影測量觀察離心土壩模型受滲流力作用之變位
★ 通隧引致鄰近基樁之荷重傳遞行為★ 潛盾施工引致之地盤沉陷案例分析
★ 以離心模型試驗探討高含水量黏性背填土 加勁擋土牆之穩定性★ 懸臂式擋土壁開挖之離心模型試驗
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 目前工程界於較堅硬的土層中發展出以無支撐雙排鋼軌樁擋土系統做為擋土設施之開挖工法,但對於影響其穩定性之因素、及開挖後對周遭地盤之影響卻未有深入之研究。
本研究利用離心模型試驗,分別探討單排樁樁間距、雙排樁前後排樁間距、雙排樁排間距以及砂土相對密度對自承式鋼軌樁擋土系統穩定性的影響,以及對鄰近地盤和對建物的衝擊。
研究結果顯示,以自承式鋼軌樁擋土系統做為擋土設施時,頂繫梁之施作有一定的必要性,而土壤相對密度之增加及樁間距縮短有助於減少擋土系統之水平變位及整體沉陷量。於雙排鋼軌樁擋土系統中,加大前排樁間距對擋土系統之穩定性有較大的不良影響,而增大排間距會減少擋土系統之變位,有助於擋土系統之穩定。開挖工程進行時,原地表面處樁身軸力會隨著已開挖深度增加而增加。另外,研究中發現僅有擋土系統之鋼軌樁排數會影響最大壁體水平位移與牆後最大地表沉陷量的關係。
摘要(英) Recently the unbraced double-row rail pile retaining system has been developed and used in the good field ground condition. However, there are only a few follow-up researches which study the factors that affect the stability of retaining system, deformation of adjacent ground buildings.
In this research, by using the unbraced rail piles retaining system, two series of centrifuge modeling tests are used to study how these five factors, including the piles spacing in the single-row system, the spacing of the front and rear row piles in the double-row system, the distance between the rows in the double-row system, and the relative density of the sand affect the adjacent areas and buildings.
The results show the necessity of constructing a tie beam on top of the pile head. Increasing the density of the sand and smaller spacing between the piles in the same row reduce the horizontal deformation and the settlement of the whole retaining system. In the double-row rail piles system, the spacing between the piles in the front row influences the stability of the retaining system more obviously than that in the rear row. Also, increasing distance between the front and rear row in the double-row system reduce the deformation and improve the stability of the retaining system. In the process of the excavation, with the increasing of excavation depth, the axial force of the piles near ground surface also increases. Moreover, the research demonstrates that only the numbers of the row in the retaining system affect the relation between the maximum horizontal displacement of the wall and the maximum surface settlement behind the wall.
關鍵字(中) ★ 開挖
★ 雙排鋼軌樁
★ 單排鋼軌樁
★ 地盤變位
★ 無支撐
關鍵字(英) ★ Unbraced
★ Double-row rail pile
★ Single-row rail pile
★ Ground deformation
★ Excavation
論文目次 中 文 摘 要.............................................................................Ⅰ
英 文 摘 要.............................................................................Ⅱ
目 錄.........................................................................................Ⅲ
表 目 錄...................................................................................Ⅵ
圖 目 錄...................................................................................Ⅶ
照 片 目 錄.........................................................................ⅩⅡ
符 號 說 明.........................................................................ⅩⅢ
第一章 緒論.............................................................................1
1-1 序…...........................................................................................1
1-2 研究動機及目的.......................................................................2
1-3 研究架構...................................................................................2
1-4 論文內容...................................................................................3
第二章 文獻回顧.....................................................................5
2-1 懸臂式擋土壁分析理論...........................................................5
2-1-1 內擠破壞分析...............................................................................6
2-2 現場觀測分析與歸納...............................................................7
2-3 數值分析方法.........................................................................12
2-4 物理模型試驗.........................................................................14
2-4-1 1g下之物理模型試驗................................................................14
2-4-2 離心模型試驗............................................................................14
2-5 離心模型基本原理.................................................................20
2-5-1 離心模型之基本相似律............................................................20
2-5-2 離心模型試驗之模型模擬........................................................23
第三章 試驗土樣、儀器設備及試驗方法............................51
3-1 試驗土樣.................................................................................51
3-2 試驗儀器及相關設備.............................................................51
3-2-1 地工離心機................................................................................51
3-2-2 模型試驗箱................................................................................52
3-2-3 移動式霣降機............................................................................53
3-2-4 模型鋼軌樁檔土系統................................................................55
3-2-5 開挖模擬系統............................................................................56
3-2-6 相關量測儀器............................................................................57
3-3 砂試體準備與試驗步驟.........................................................58
3-3-1 試體準備....................................................................................58
3-3-2 離心模型試驗............................................................................59
第四章 試驗結果與分析.......................................................83
4-1 試驗類別.................................................................................83
4-2 鋼軌樁樁身彎矩分佈.............................................................85
4-2-1 樁間距1m單排鋼軌樁樁身彎矩分佈.....................................85
4-2-2 開挖貫入比及樁間距對樁身彎矩之影響……........................86
4-2-3 雙排鋼軌樁樁身彎矩分佈........................................................87
4-2-3-1 排間距對雙排鋼軌樁樁身彎距之影響.................................87
4-2-3-2 前後排樁間距對雙排鋼軌樁樁身彎矩之影響.....................87
4-2-3-3 土壤相對密度對雙排鋼軌樁樁身彎矩之影響.....................88
4-3 開挖過程樁身彎矩與原地表面處樁身軸力變化.................89
4-3-1 開挖深度對單排鋼軌樁樁身彎矩之影響................................89
4-3-2 已開挖深度對雙排鋼軌樁樁身彎矩之影響............................90
4-3-3 原地表面處樁身軸力變化........................................................91
4-3-3-1 排間距對原地表面處樁身軸力之影響.................................91
4-3-3-2 前後排樁樁間距對原地表面處樁身軸力之影響.................92
4-3-3-3 土壤相對密度對原地表面處樁身軸力之影響.....................93
4-4 鋼軌樁樁樁頂水平變位、地表沉陷與頂繫梁剛體位移.......93
4-4-1 鋼軌樁樁頂水平變位................................................................94
4-4-2 地表沉陷型態............................................................................96
4-4-3 地表沉陷槽分佈範圍................................................................98
4-4-4 頂繫梁剛體位移......................................................................100
4-5 鋼軌樁樁體變形分析...........................................................101
4-5-1 單排鋼軌樁樁體變形..............................................................101
4-5-2 雙排鋼軌樁樁體變形..............................................................102
4-6 鋼軌樁剪力與地盤反力分析...............................................103
4-6-1 樁身所承受的剪力..................................................................104
4-6-1-1 單排樁樁身所受之剪力.......................................................104
4-6-1-2 雙排樁樁身所受之剪力.......................................................105
4-6-2 地盤反力分析..........................................................................107
4-6-2-1 單排樁所受之地盤反力.......................................................107
4-6-2-2 雙排樁所受之地盤反力.......................................................107
4-6-3 理論土壓力與地盤反力比較..................................................109
4-7 土壓力分析...........................................................................110
4-7-1 作用於單排鋼軌樁上的土壓力分析......................................110
4-7-2 作用於雙排鋼軌樁上的土壓力分析......................................111
4-7-2-1 排間距對土壓力的影響.......................................................111
4-7-2-2 前後排樁間距對土壓力的影響...........................................111
4-7-2-3 土壤相對密度對土壓力的影響...........................................112
4-8 自承式鋼軌樁擋土系統穩定分析.......................................113
4-8-1 單排鋼軌樁擋土系統..............................................................113
4-8-2 前後對稱之雙排鋼軌樁擋土系統..........................................116
4-8-3 非前後對稱之雙排鋼軌樁擋土系統......................................118
4-9 雙排樁牆體勁度換算...........................................................119
第五章 結論與建議.............................................................187
5-1 結論.......................................................................................187
5-2 建議.......................................................................................189
參考文獻.................................................................................190
參考文獻 [1] 李崇正,林志棟,林俊雄,「大地工程研究者知新工具:離心模型試驗」,岩盤工程研討會論文集,中壢,第649-669頁(1994)。
[2] 陳思宏,「黏土層中未襯砌隧道之破壞機制」,碩士論文,國立中央大學土木工程學系,中壢(1996)。
[3] 莊孟翰,「未襯砌隧道壁變形引致地盤下陷分布形態分析」,碩士論文,國立中央大學土木工程學系,中壢(1996)。
[4] 陳志豪,「懸臂式擋土牆開挖之離心模型試驗」,碩士論文,國立中央大學土木工程學系,中壢(2003)。
[5] 江國輝,「通隧引致鄰近基樁之荷重傳遞行為」,碩士論文,國立中央大學土木工程學系,中壢(2003)。
[6] 林婷媚,「雙排樁無支撐擋土結構壁體變形行為之研究」,碩士論文,國立雲林科技大學營建工程學系,雲林(2003)。
[7] 林貽謙,「自承式鋼軌樁擋土系統之離心模擬」,碩士論文,國立中央大學土木工程學系,中壢(2006)。
[8] 歐章煜、謝百鉤,「以經驗公式預測台北盆地深開挖引致之地表沉陷」,地工技術雜誌,第五十三期,第5-14頁(1996)。
[9] 歐章煜、謝百鉤、唐雨耕,「深開挖穩定分析與變形分析」,地工技術雜誌,第七十六期,第25-38頁(1999)。
[10] 陳厚銘,「自承式雙排鋼版樁工法擋土開挖行為探討」,地工技術雜誌,第七十五期,第41-48頁(1999)。
[11] 王建智、林宏達、吳明峰,「黏土層深開挖引致之地表沉陷」,地工技術雜誌,第七十六期,第51-62頁(1999)。
[12] 謝百鉤,「黏土層深開挖引致地盤最大位移預測」,中國土木水利工程學刊,第十三卷,第三期,第489-498頁(2001)。
[13] 謝旭昇、石強、林婷媚,「淺論雙排樁無支撐工法」,地工技術雜誌,第九十七期,第5-14頁(2003)。
[14] 歐章煜,深開挖工程分析設計與實務,科技圖書,台北(2002)。
[15] Acutronic, Geotechnical Centrifuge Model 665-1 Product Description 5933H, France (1993).
[16] Bolton, M. D., and Powrie, W., “The collapse of diaphragm walls retaining clay,” Geotechnique, Vol. 37, No. 3, pp. 335-353 (1987).
[17] Briaud, J. L., Nicholson, P., and Lee, J., “Behavior of full-scale VERT wall in sand,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 126, No. 9, pp. 808-818 (2000).
[18] Clough, G.W., and O’Rourke T. D., “Construction induced movement of insitu walls,” Proceedings Design and performance of earth retainingst structures, ASCE, pp. 439-470 (1990).
[19] Christian M., “Analysis of wall ground movements due to deep excavations in soft soil braced on a new worldwide database,” Soil and Foundations, Vol. 44, No. 1, pp. 87-98 (2004).
[20] Frydman, S., and Baker, R., “Modelling the soil nailing-Excavation process,” centrifuge 94, Rotterdam, pp. 669-674 (1994).
[21] Goldberg, D. T., Jaworski, W. E., and Gordan, M. D., “Lateral support system and underpinning,” Report FHWA-RD, pp. 75-128 (1976).
[22] Georgiadis, M., Anagnostopoulos, C., and Saflekou, S., “Centrifuge testing of laterally loaded piles in sand,” Canadian Geotechnical Journal, Vol. 29, pp. 208-216 (1992).
[23] Georgiadis, M., and Anagnostopoulos, C., “Displacement of structures adjacent to cantilever sheet pile walls,” Soil and Foundations, Vol. 39, No. 2, pp. 99-104 (1999).
[24] Hashash, Y. M. A., and Whittle, J. A., “Ground movement prediction for deep excavations in soft clay,” Journal of Geotechnical Engineering, ASCE, Vol. 122, No. 6, pp. 474-486 (1996).
[25] Ilyas, T., Leung, C. F., and Budi, S. S., “Centrifuge model study of laterally loaded pile groups in clay,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 130, No. 3, pp. 274-283 (2004).
[26] Kimura, T., Takemura, J., Hiro-oka, A., Okamura, M., and Park, J., “Excavation in soft clay using an in-flight excavator,” Centrifuge 94, Rotterdam, pp. 649-654 (1994).
[27] King, G. j. w., “Analysis of cantilever sheet-pile walls in cohesionless soil,” Journal of Geotechnical Engineering, ASCE, Vol. 121, No. 9, pp. 629-635 (1995).
[28] Khan, M. R. A., Takemura, J., Fukushima, H., and Kusakabe, O., “Behavior of double sheet pile wall cofferdam on sand observed in centrifuge tests,” International Journal of Physical Modelling in Geotechnics, IJPMG, Vol. 1, No. 4, pp. 1-16 (2001).
[29] Leung, C. F., Chow, Y. K., and Shen, R. F., “Behavior of pile subject to excavation-induced soil movement,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 126, No. 11, pp. 947-954 (2000).
[30] Liu, J., “Centrifugal modeling of multi-braced and unbraced excavation failures,” Physical Modelling in Geotechnics, Canadian, pp. 841-845 (2002).
[31] Leung, C. F., Lim, J. K., Shen, R. F., and Chow, Y. K., “Behavior of pile groups subject to excavation-induced soil movement,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 129, No. 1, pp. 58-65 (2003).
[32] McNamara, A. M., and Taylor, R. N., “Use of heave reducing piles to control ground movements around excavations,” Physical Modelling in Geotechnics, Canadian, pp. 847-852 (2002).
[33] Mokwa, R. L., and Duncan, J. M., “Rotational restraint of pile caps during lateral loading,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 129, No. 9, pp. 829-837 (2003).
[34] Madabhushi, S. P., and Chandrasekaran, V. S., “Rotation of cantilever sheet pile walls,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 131, No. 2, pp. 202-212 (2005).
[35] Nahas, A. EL., and Takemura, J., “External stability of vertical excavations in soft clay with self-supported DMM walls,” Soil and Foundations, Vol. 42, No. 1, pp. 53-69 (2002).
[36] Nip, D. C. N., and Ng, C. W. W., “Back-analysis of laterally loaded bored piles,” Geotechnical Engineering, ICE, Vol. 158, pp. 63-73 (2005).
[37] Ou, C. Y., and Lai, C. H., “Finite-element analysis of deep excavation in layered sandy and clayey soil deposits,” Canadian Geotechnical Journal, Vol. 31, pp. 204-214 (1994).
[38] Peck, R. B., “Deep Excavation and tunneling in soft ground,” Proc. 7th Int. Conf. On Soil Mech. Found. Eng., State of Art Volume, pp. 225-290 (1969).
[39] Powrie, W., “Limit equilibrium analysis of embedded retaining walls,” Geotechnique, Vol. 46, No. 4, pp. 709-723 (1996).
[40] Poh, T. Y., Goh, A. T. C., and Wong, I. H., “Ground movements associated with wall construction:case histories,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 127, No. 12, pp. 1061-1069 (2001).
[41] Seek, J. W., Kim, O. Y., Chung, C. K., and Kim, M. M., “Evaluation of ground and building settlement near braced excavation sites by model testing,” Canadian Geotechnical Journal, Vol. 38, pp. 1127-1133 (2001).
[42] Takemura, J., Kondoh, M., Esaki, T., Kouda, M., and Kusakabe, O., “Centrifuge model tests on double propped wall excavation in soft clay,” Soil and Foundations, Vol. 39, No. 3, pp. 75-87 (1999).
[43] Tsai, J. S., Jou, L. D., and Hsieh, H. S., “A full-scale stability experiment on a diaphragm wall trench,” Canadian Geotechnical Journal, Vol. 37, pp. 379-392 (2000).
[44] Vermeer, P. A., Punlor, A., and Ruse, N., “Arching effects behind a soldier pile wall,” Computer and Geotechnics, Vol. 28, No. 6, pp. 379-396 (2001).
[45] Zhang, S. D., and Zhang, H. D., “Stability of deep excavations in soft clay,” Centrifuge 94, Rotterdam, pp. 643-648 (1994).
指導教授 李崇正(C-J Lee) 審核日期 2006-12-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明