參考文獻 |
英文
Armentano VA, Franca PM, de Toledo FMB(1999), A network flow model for the capacitated lot-sizing problem. OMEGA, Vol.27(2), pp.275-284.
Awi Federgruem and Michal Tzur(1991), A simple forward algorithm to solve general dynamic lot sizing models with n periods in o(n log n) or o(n) time, Management Science, Vol.31, No.8, pp.909-925.
B. Karimi, S.M.T. Fatemi Ghomi, J.M. Wilson(2003), The capacitated lot sizing problem: a review of models and algorithms, OMEGA, Vol.31, pp.365-378.
Bashari-Kasani, H. (1989), Replenishment schedule for deteriorating items with time-proportional demand, Journal of the Operational Research Society, Vol.40, pp.75-81.
Belvaux G, Wolsey LA(2001), Modeling practical lot-sizing problems as mixed integer programs, Management Science, Vol.47(7), pp.724-738.
Ceveiye Gencer, Serpil Erol, Yalcin Erol(1999), A decision network algorithm for multi-stage dynamic lot sizing problems, International Journal of production economics, Vol.62(3), pp. 281-285.
Chan G.H., Xia Z.H., Choo E.U.(1999), The critical cut-off value approach for dynamic lot sizing problems with time varying cost parameters, Computers & Operations Research, Vol.26(2), pp. 179-188.
Chang, H.J. and Dye, C.Y. (1999), An EOQ model for deteriorating items with exponential time-varying demand and partial backlogging, International Journal of Information and Management Sciences, Vol. 10,pp. 1-11.
Charles R. Sox (1997), Dynamic lot sizing with random demand and non-stationary costs, Operation Research Letters, Vol.20(4), pp. 155-164.
Chung C, Flynn J, Lin CM(1994), An effective algorithm for the capacitated single item lot size problem, European Journal of Operation Research, Vol.75(2), pp.427-440.
Chung-Yee Lee, Sila Cetinkaya, Albert P. M. Wagelmans(2001), A dynamic lot-sizing model with demand time windows, Management Science, Vol.47(10), pp.1384-1395.
Chung-Yee Lee, Sila Cetinkaya, Albert P. M. Wagelmans(2001), A dynamic lot-sizing model with demand time windows, Management Science, Vol.47(10), pp.1384-1395.
Christopher Suerie, Hatmut Stadtler(2003), The capacitated lot-sizing problem with linked lot sizes, Management Science, Vol.49, No.6, pp. 1039-1054.
Cohen, M.A., (1977), Joint pricing and ordering policy for exponentially decaying inventory with known demand, Naval Research Logistics Quarterly, Vol.24, pp.257-268.
Covert, R.P. and Philip, G.C. (1973), An EOQ model for items with Weibull distribution deteriorating, AIIE Transactions, Vol.5, pp.323-326.
Deniz Aksen, Kemal Altinkemer and Suresh Chand (2003), The single-item lot-sizing problem with immediate lost sales, European Journal of Operation Research ,Vol.147, pp.558-566.
Dave, U. and Patel, L. K., (1981), (T, ) policy inventory model for deteriorating items with items with time-proportional demand, Journal of the Operational Research Society, Vol.40, pp137-142.
Deb, M. and Chaudhuri, K. (1987), A note on the heuristic for replenishment of trended inventories considering shortage, Journal of the Operational Research Society, VOL.38, pp459-463.
Dogramaci A, Panayiotopoulos JC, Adam NR(1981), The dynamic lot-sizing problem for the multiple items under limited capacity, AIIE Transactions, Vol.13(4), pp.294-303.
Donaldson, W.A. (1977), Inventory replenishment policy for a linear trend in demand – An analytical solution, Operations Research Quarterly, Vol.28, pp.663-670.
Fatemi Ghomi SMT, Hashemin SS(2002), An analytical method for single level-constrained resources production problem with constant set-up cost. Iranian Journal of Science & Technology, Transaction B, Vol.26(B1), pp.69-82.
Harris FW(1917), How many parts to make at once. Factory, The Magazine of Management, Vol.10(2), pp.135-136.
Karni R, Roll Y(1982), A heuristic algorithm for the multi-item lot sizing problem with capacity constraints, AIIE Transactions, Vol.14(4), pp.249-259.
Kirca O, Kokten M(1994), A new heuristic approach for the multi-item dynamic lot sizing problem, European Journal of Operation Research ,Vol.75(2), pp.332-341.
Gowami, A., and Chaudhuri, K.S. (1991), An EOQ model for deteriorating items with shortages and linear trend in demand, Journal of the Operational Research Society, Vol.42, pp1105-1110.
Ghare, P.M. and Schrader, GF (1963), A model for exponential decaying inventory, Journal of Industrial Engineering, Vol.14(6), pp.238-243.
Gin Hor Chan and Kim Suan Chiu(1997), A simple heuristic for multi-product dynamic lot sizing problems, Computers Ops. Res., Vol.24, pp.969-979.
Gunther HO(1987), Planning lot sizes and capacity requirements in a single stage production systems, European Journal of Operation Research, Vol.31(2), pp.223-231.
Heinrich Kuhn(1997), A dynamic lot sizing model with exponential machine breakdown, European Journal of Operation Research, Vol.100, pp.514-536.
J.Guttierrez, A. Sedeno-Noda, M.Colebrook, J. Sicilia(2002), A new characterization for the dynamic lot size problem with bounded inventory, Computer & Operation Research, Vol.30, pp.383-395.
Jozesf Voros(1995), Setup cost stability region for the multi-level dynamic lot sizing problem, European Journal of Operation Research, Vol.87, pp.132-141.
Orlicky J.(1975), Material requirement planning. New York: McGraw-Hill.
Papachristos, S. and Skouri, K. (2000), An optimal replenishment policy for deteriorating items with time-varying demand and partial-exponential type-backlogging, Operations Research Letters, Vol.27, pp.175-184.
Philip, G.C. (1974), A generalized EOQ model for items with Weibull distribution, AIIE Transactions, Vol.6, pp.159-162.
Raafat F. (1991), Survey of Literature on Continuously Deteriorating Inventory Models, Journal of the Operational Research Society, Vol. 42(1), pp. 27-37.
Scahan, R.S. (1984), On (T, ) policy inventory model for deteriorating items with time proportional demand, Journal of the Operational Research Society, Vol.11, pp1013-1019.
Seliver EA, Meal HC(1973), A heuristic for selecting lot size quantities for the case of a deterministic time-varying demand rate and discrete opportunistic for replenishment, Production and Inventory Management, Vol.14(1), pp 64-74.
Shah, Y.K. (1977), An order-level lot-size inventory model for deteriorating items, AIIE Transactions, Vol.9, pp. 108-112.
Tadikamalla, P.R (1978), An EOQ inventory model for items with Gamma distribution, AIIE Transactions, Vol.10, pp.100-103.
Thomas Ingold and Heinz Groflin (1997), Feasible sequential decision and a flexible lagrangean-based heuristic for dynamic multi-level lot sizing, Int. Trans. Opl. Res., Vol.4, No5/6, pp. 327-340.
Trigerio WW(1989), A simple heuristic for lot-sizing with setup times, Decision Science, Vol.20, pp.294-303.
Wagner, H. M., T. M. Whitin. (1985), Dynamic version of economic lot size model, Management Science, Vol.5, pp.89-96.
Wee, H. M. (1995), A deterministic lot size inventory model for deteriorating items with shortage and a declining market, Computers and Operations Research, Vol.22, pp.345-356.
Wee, H. M., Shum Yu-Su (1999), Note: Model development deteriorating inventory in material requirement planning systems, Computers & Industrial Engineering, Vol.36, pp.219-225.
中文
白建二、陳文賢、林哲生(1997) ,生產管理,國立空中大學,台北市
陳銘崑(1997) ,現代生產管理,曉園書版社,台北市
梁添富(1999),物料管理,育友圖書有限公司,台北市 |