博碩士論文 93322037 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:19 、訪客IP:18.222.78.65
姓名 吳志鴻(Chih-Hong Wu)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 淺層砂土中音波傳遞特性之研究
相關論文
★ 動力夯實之有效影響深度與地表振動阻隔研究★ 砂土層中潛盾機地中接合漏水引致地層下陷之案例探討
★ 動力壓密工法施工引致地表振動之阻隔★ 音波式圓錐貫入試驗於土層界面判定之應用
★ 孔洞開挖後軟弱地盤之沉陷行為★ 超載對打設排水帶後軟弱地盤壓密行為之影響
★ 山岳隧道湧水處理之研究★ 砂土中基樁側向位移之改良研究
★ 圓錐貫入試驗中土壤音壓之研究★ 水泥混合處理砂質土壤液化特性之改良研究
★ 扶壁改善深開挖擋土壁體變形行為之研究★ 微音錐應用於土壤音射特性之研究
★ 黏性土壤受定量擠壓變形後之力學行為★ 黏土中短樁側向位移之改良研究
★ 砂土經水泥改良後之力學性質★ 黏土中模型樁側向位移之改良研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 摘要
為瞭解音波於土壤介質中傳遞的特性,本研究藉著電容式微音器的高靈敏度及優良的頻率反應,於大型土壤試驗槽中,控制不同鋼球落距使落於砂土表面作為音源。分別量測不同深度聲速、不同位置及深度之均方根音壓及頻率分佈。最後以鋼球撞擊不同材質塊體產生音源,探討其在砂土中音波訊號之異同。
综合實驗結果發現,於淺層疏鬆砂土中,音波傳遞速度介於170~220m/s之間,且隨深度的增加而遞增,但遞增的速度有逐漸變緩的趨勢。控制不同鋼球落距撞擊砂土表面,所產生於砂土中之音波訊號,均方根音壓方面,會隨著距音源距離增加而降低。其中水平方向在距離2m之內,有急劇降低的趨勢,而2m之外均方根音壓降低的趨勢卻變得非常緩慢。頻率方面,距音源水平距離1m以內分佈在300Hz以下,主要頻率頻帶在30Hz以下。而水平距離1m以外分布在30~300Hz之間,主要頻率頻帶在30~100Hz之間。改變鋼球落距條件,不會改變均方根音壓於空間中衰減的趨勢及音波於砂土中的頻率分佈。另外,改變鋼球撞擊材質所產生之音波訊號,主要的差異在於距音源水平距離1m內30Hz以下頻帶中,主要頻率及所對應之音壓大小明顯不同。
摘要(英) Abstract
To realize the properties of acoustic waves propagating in soil medium, this research rely on the high sensitivity and excellent frequency response of condenser microphone to control the drop height of a steel ball dropping to the surface of sand as a sound source at the large scale soil testing pit. The purposes of this research are to investigate the propagation speed of sound, the distribution of root mean square of sound pressure and the variation of sound pressure in frequency domain in the soil medium. Finally, acoustic responses in the sand layer by dropping a steel ball on different materials were compared.
From the results of experiments, it was revealed that the propagation speed of acoustic waves is about 170~220m/s and it is getting faster with depth, but the growth of speed is getting slower. Acoustic responses of dropping a steel ball onto the surface of sand layer by different drop heights make the root mean square of sound pressure attenuate with the increase of distance between sound source and microphone. The variation of root mean square of sound pressure is very large between 0~1m in horizontal direction from sound source, and very small besides 0~1m. In another aspect, frequency distributes below 300Hz and it mainly distributes below 30Hz within 1m in horizontal direction from sound source. Frequency occupy the domain of 30~300Hz and mainly occupy the domain of 30~100Hz outside of 1m from sound source. Changing the drop height of a dropping steel ball did not change the attenuation trend of root mean square of sound pressure and the frequency distribution of acoustic signals in sand. In addition, the major differences of the acoustic signals of changing the material of knocked blocks is that the change of the dominant frequency and corresponding sound pressure inside of 1m distance from sound source in horizontal direction and below 30Hz in frequency domain.
關鍵字(中) ★ 音波傳遞
★ 聲速
★ 均方根音壓
★ 主要頻率
關鍵字(英) ★ root mean square of sound pressure
★ propagation of acoustic wave
★ sound speed
★ dominant frequency
論文目次 目錄
致謝 II
摘要 IV
ABSTRACT V
目錄 VI
表目錄 X
圖目錄 XI
符號說明 XV
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 1
1.3 研究方法 2
1.4 論文內容 2
第二章 文獻回顧 3
2.1 音波基本原理 3
2.1.1 波的參數 4
2.1.2 音波基本參數 5
2.1.3 音波傳遞速度 7
2.1.4 波傳衰減特性 7
2.1.4.1 空氣中音波衰減特性 7
2.1.4.2 土層中振波衰減特性 8
2.1.5 音射現象 11
2.2 音波之應用 12
2.2.1 音射現象與土壤力學之關係 12
2.2.2 音射源之定位 13
2.2.2.1 區域定位法 13
2.2.2.2 到達時間差定位法 13
2.2.2.3 三軸後德格蘭姆法 17
2.2.3 不穩定邊坡之音波量測 18
2.2.4 微音錐貫入試驗 19
2.2.5 土石流地聲特性之研究 22
第三章 試驗土樣、儀器設備及試驗方法 37
3.1 試驗土樣 37
3.2 試驗儀器與相關設備 37
3.3 試驗方法及步驟 41
3.3.1 裝置防砂罩微音器之校正 42
3.3.2 淺層砂土中聲速量測試驗方法 43
3.3.3 音波於淺層疏鬆砂土中傳遞特性之量測試驗方法 45
3.3.4 撞擊不同落點材質之音波量測試驗方法 46
3.4 音波訊號處理 46
3.4.1 背景噪音之影響與校正 46
3.4.2 取樣定理 47
3.4.3 快速傅立葉轉換 48
第四章 試驗結果與分析 66
4.1 聲速量測試驗 66
4.1.1 聲速之探討 66
4.2 音波在淺層砂土中傳遞訊號之量測 67
4.2.1 均方根音壓分析 68
4.2.1.1 背景噪音的濾除 68
4.2.1.2 水平向均方根音壓分析 69
4.2.1.3 垂直向均方根音壓分析 70
4.2.1.4 土層中音壓之衰減與分佈 71
4.2.2 頻率分析 72
4.2.3 均方根音壓之衰減與頻率分佈之討論 74
4.3 撞擊不同材質塊體所產生之音波訊號 75
第五章 結論與建議 118
5.1 結論 118
5.2 建議 119
參考文獻 120
參考文獻 參考文獻
1. 土質工學會,土質試驗法,日本土質工學會,第172-188頁(1976)。
2. 日本機械学会,岩石破坏力學とその応用,第101-115頁(1989)。
3. 王志偉,「微音錐應用於土壤音射特性之研究」,碩士論文,國立中央大學土木工程學系,中壢 (2002)。
4. 方治國,「音洩檢測原理應用」,檢測科技,第十六卷,第一期,第4-9頁(1998)。
5. 古秉弘,「砂土中音波傳遞與量測之研究」,碩士論文,國立中央大學土木工程學系,中壢(2005)。
6. 李佳龍,「音射定位法於岩石材料之應用」,碩士論文,國立成功大學資源工程學系,第51-58頁,台南(2003)。
7. 徐萬樁,噪音與振動控制,協志工業叢書,台北(1984)。
8. 黃清哲、謝正倫、鄭友誠、尹孝元、許世盛、蔡玫諼,「土石流地聲特性之實驗研究」,中國土木水利工程學刊,第十六卷,第一期,第53-63頁 (2004)。
9. 莊傳業,「微震音放射在圓錐貫入試驗中之應用」,碩士論文,國立中央大學土木工程學系,中壢(1996)。
10. 陳文泓,「利用生石灰樁處理飽和粘性土層之研究」,碩士論文,國立中央大學土木工程學系,中壢(1987)。
11. 陳正興,朱惠君,「南科園區地盤振動衰減參數之量測」,南部科學園區振動防治策略研討會論文集,台南,第151-170頁(2000)。
12. 陳精日、章書成、葉明富,「泥石流地聲特性及NJ-2型無線遙側泥石流警報器的研製」,第二屆全國泥石流學術會議論文集,第36-41頁(1991)。
13. 葉逸彬,「圓錐貫入試驗中砂土音射特性之研究」,碩士論文,國立中央大學土木工程學系,中壢(2004)。
14. 廖志信,「岩石材料中音射發生源之位置探測研究」,碩士論文,國立成功大學土木工程研究所,台南(1993)。
15. 趙晉棠,通信原理,全華科技圖書股份有限公司,台北(1995)。
16. 蔡國隆、王光賢、涂聰賢,聲學原理與噪音量測控制,全華科技圖書股份有限公司,台北(2005)。
17. 蘇德勝,噪音原理及控制,臺隆書店,台北(2000)。
18. Anderson, W.F., and Pyrah, I.C., “Presssuremeter testing in a clay calibration chamber,” Proceedings of the First International Symposium on Calibration Chamber Testing/ISOCCT1, Potsdam, New York, pp. 55-66 (1991).
19. Andrus, R.D., and Stokoe, K.H., “Liquefaction resistance of soils based on shear wave velocity,” Journal Geotechnical Engineering, Vol. 126, No. 11, pp. 1015-1026 (1997).
20. ASTM D3441-86, “Standard Test Method for Deep Quasi-Static Cone and Friction-Cone Penetration Test of Soil,” Annual book of ASTM Standards, Vol. 4, No. 8 (1986).
21. Beard, F.D., “Predicting Slides in Cut Slopes,” Western Construction, pp. 72 (1961).
22. Begemann, H.K., “The Friction Jacket Cone as an Aid in Determining the Soil Profile,” Proceedings 6th International Conference on Soil Mechanics and Foundation Engineering, Vol. 1, pp. 17-20 (1965).
23. Bolt, B.A., Earthquakes: A Primer, Freeman, San Francisco, pp.241(1978).
24. Clayton, C.R.I., Simons, N.E., and Matthews, M.C., Site Investigation, Intl Pubns, Westport (1982).
25. Dixon, N., Hill, R., and Kavanagh, J., “Acoustic Emission Monitoring of Slope Instability : Development of an Active Waveguide System,” Proceedings of the Institution of Civil Engineers : Geotechnical Engineering, Vol. 156, No. 2, pp. 83-95 (2003).
26. Douglas, B.J., and Olsen, R.S., “Soil classification using electric cone penetrameter,” Symposium on Cone Penetration Testing and Experience, Geotechnical Engineering Division, ASCE, OCT., St. Louis, pp. 209-227 (1981).
27. Ewing, W.M., and Jardetzky, W.S., Elastic Waves in Layered Media, McGraw-Hill Book Co., New York, pp. 380-381 (1957).
28. Ghionna, V.N., and Jamiolkowski, M., “A critical appraisal of calibration chamber testing of sands,” Proceedings of the First International Symposium on Calibration Chamber Testing/ISOCCT1, An-Bin Huang, Ed., Potsdam, New York, pp. 13-40 (1991).
29. Gutowski, T.G. and Dym, C.L., “Propagation of Ground Vibration: A Review,” Journal of Sound and Vibration, Vol. 49, No. 2, pp. 179-193 (1976).
30. Hardy, H.R., “Application of acoustic techniques to rock mechanics research,” Acoustic Emission, ASTM STP505, American Society for Testing and Materials, pp. 41-83 (1972).
31. Hardy, H.R. Jr., “Application of acoustic emission techniques to rock and rock structures: a state of the art review,” Acoustic Emission in Geotechnical Engineering Practice, ASTM STP750, American Society for Testing and Materials, pp. 4-92 (1981).
32. Holden, J.C., “Laboratory research on static cone penetrometers,” University of Florida, Gainsville, Department of Civil Engineering, Internal Report, CE-SM-71-1 (1971).
33. Holden, J.C., “History of the first six CRB calibration chamber,” Proceedings of the First International Symposium on Calibration Chamber Testing/ISOCCT1, Potsdam, New York, pp. 1-12 (1991).
34. Houlsby, G.T., and Hitchman, R., “Calibration chamber tests of a cone penetrometer in sand,” Geotechnique, Vol. 38, No. 1, pp. 39-44 (1988).
35. Juang, C.H., and Jiang, T., “Assessing probabilistic methods for liquefaction potential evaluation,” Soil Dynamics and Liquefaction, ASCE, pp. 148-162 (2000).
36. Juang, C.H., Chen, C.J., and Jiang, T., “Probabilistic framework for liquefaction potential by shear wave velocity,” Journal of Geotechnical Engineering, ASCE, Vol. 127, No. 8, pp. 670-678 (2001).
37. Koerner, R.M., McCabbe, W.M., and Lord, A.E., “Acoustic Emission Behavior and Monitoring of Soils,” Acoustic Emission in Geotechnical Engineering Practice, ASTM STP 750, American Society for Testing and Materials, pp. 93-141 (1981).
38. Kramer, S.L., Geotechnical Earthquake Engineering, Prentice-Hall, Upper Saddle River, N.J. (1996).
39. Lecture Note, Basic Concept of Sound, Brüel&Kjær, Nærum, Denmark, pp.6-8(1998).
40. Liao, T., Mayne, P.W., Tuttle, M.P., Schweig, E.S., and Van Arsdale, R. B., “CPT site characterization for seismic harzards in the new madrid seismic zone,” Soil Dynamics and Earthquake Engineering, Vol. 22, pp. 943-950 (2002).
41. Lord, H., Gatley, W.S., and Evensen, H.A., “Noise Control for Engineers,” McGraw-Hill Inc (1980).
42. Massarsch, K.R., “Acoustic penetration testing,” Proceedings of the 4th Geotechnical Seminar, Field Instrumentation and In-Situ Measurements, Nanyang Tech. Inst., Singapore (1986).
43. Meigh, A.C., “Cone penetration testing: methods and interpretation,” CIRIA ground engineering report : in-situ testing, Butterworths, London (1987).
44. Melzer, K.J., “Sondenunterschungen in sand,” D. Dissertation, Technichen Hochschule Aachen (1968).
45. Muromachi, T., “Phono-sounding apparatus-discrimination of soil type by sound,” Proceedings of the First European Symposium on Penetuation Testing, Amsterdam, ESOPT-I, Vol. 21, pp. 110-112 (1974).
46. Olsen, R.S., and Mitchell, J.K., “CPT stress normalization and predication of soil classification,” Proceedings of the International Symposium on Cone Penetration Testing-CPT´95, Linkoping, Sweden, October (1995).
47. Parkin, A.K., and Lunne, L., “Boundary Effects in the Laboratory Calibration of a Cone Penetrometer for Sand,” Proceedings of the Second European Symposium on Penetration Testing, Amsterdam, ESOPT-II, pp. 761-768 (1982).
48. Parkin, A.K., “The calibration of cone penetration,” Proceedings of the First International Symposium on Penetration Testing/ISOPT1, Orlando, Florida, pp. 221-243 (1988).
49. Richart, F.E., Woods, R.D., and Hall, J.R., Vibrations of Soils and Foundations, Prentice-Hall, Englewood Cliffs, N.J. (1970).
50. Robertson, P.K., “In situ testing and its application to foundation engineering,” Canadian Geotechnical Journal, No. 23, pp. 573-594 (1986).
51. Robertson, P.K., “Soil classification using the cone penetration test,” Canadian Geotechnical journal, No. 27, pp. 151-158 (1990).
52. Robertson, P.K., and Wride, C.E., “Evaluating cyclic liquefaction potential using the cone penetration test,” Canadian Geotechnical Journal, Vol. 35, No. 3, pp. 442-459 (1998).
53. Ronnie, K.M., and Paul, McIntire., “Acoustic emission testing,” Nondestructive Testing Handbook, 2nd Ed., Vol. 5 (1986).
54. Salgado, R., Mitchell, J.K., and Jamiolkowski, M., “Cavity expansion and penetration resistance in sand,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 123, No. 4, pp. 344-354 (1998).
55. Scott, I.G., “Basic acoustic emission,” Nondestructive Testing Monographs Tracts, Vol. 6, Gordon and Breach Science Publishers (1991).
56. Schmertmann, J.H., “Guidelines for cone penetration test, performance and design,” Federal Highway Administration, Report FHWA-TS-78- 209 (1978).
57. Seed, H.B., and Idriss, I.M., “Simplified procedure for evaluating soil liquefaction potential,” Journal Soil Mechanics Foundations Division, Vol. 97 No. 9, pp. 1249-1273 (1971).
58. Spanner, J.C., Brown, A., Hay, D.R. Notvest, K., and Plooock, A., “Foundationals of acoustic emission testing,” Nondestructive Testing Handbook, 2nd Ed., Vol. 5, pp. 11-44 (1987).
59. Tcheng, Y., “Foundations profonds en milieu pulverulent a diverses compacities,” Annales de I'Institut Technique du Batiment et des Travaux Publics, Sols et Fondations 54, pp. 219-220 (1966).
60. Technical Document, Microphone Handbook, Brüel&Kjær, Nærum, Denmark, pp.2-8(1996).
61. Tringale, P.T., “Soil identification in-situ using an acoustic cone penetrometer,” Ph.D. Dissertation, University of California, Berkeley (1983).
62. Veismanis, A.S., “Laboratory investigation of electrical friction-cone penetrometers in sand,” Proceedings of European Symposium on Penetration Testing, ESOPT-I, Stockholm, Vol. 2.2 (1974).
63. Villet, W.C.B., “Acoustic emission during the static penetration of soils,” Ph.D. Dissertation, University of California, Berkeley (1981).
64. Worth, C.P., “Interpretation of In Situ Soil Test,” 24th Rankine Lecture, Geotechnique, Vol. 34, pp. 449-489 (1984).
指導教授 張惠文(Hwei-Weng Chang) 審核日期 2006-7-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明