參考文獻 |
1. 王中允,1999,路段容量限制動態用路人旅運選擇模型之研究,國立中央大學土木工程學系博士論文,中壢。
2. 卓訓榮,1991,「以廣義反矩陣方法探討均衡路網流量的敏感度分析」,運輸計劃季刊,第二十一卷,第一期,頁23-34。
3. 卓訓榮,1992,「最短距離方法與廣義反矩陣敏感性分析方法之比較」,運輸計劃季刊,第二十卷,第一期,頁1-14。
4. 卓訓榮,林培煒,1999,「均衡路網流量敏感度分析路網資訊獨立性之研究」,運輸學刊,第十一卷,第四期,頁73-86。
5. 卓訓榮,羅仕京,1999,「以廣義反矩陣的特性推導路徑非負流量之研究」,運輸學刊,第十一卷,第二期,頁39-48。
6. 周鄭義,1999,動態號誌時制最佳化之研究-雙層規劃模型之應用,國立中央大學土木工程學系碩士論文,中壢。
7. 陳惠國,王中允,1999,「拉氏演算法求解路段容量限制動態用路人路徑選擇問題之比較」,中國土木水利工程學刊。
8. Ahn, B. and Hogan W.W., (1982), “On Convergence of the PIES Algorithm for Computing Equilibria,” Operations Research, Vol. 30, No. 2, pp 281-300.
9. Ben-Ayed, O., (1988), “Bileve Linear Programming : Analysis and Application to the Network Design Problem,” Ph.D Thesis in Business Administration, University of Illinois at Urbana-Champaign.
10. Ben-Ayed, O., (1993), “Bilevel linear programming,” Computers and Operation Research, Vol. 20, pp.485-501.
11. Chen, H.K., and H.W. Chou, (2005), “Supply Chain Network Equilibrium with Asymmetric Variable Demand and Cost Functions,” Working Paper at National Central University, Taiwan.
12. Chen, H.K., (2005), “Formulating the Reverse Supply Chain Network Equilibrium Problem,” Proceedings of the 1st International Conference on Transportation and Logistics, Singapore.
13. Chen, H.K., C.Y. Chou, C.T. Lai, (2004), “A Bilevel Dynamic Signal Timing Optimization Problem,” Proceedings (CD-ROM) of the 2004 IEEE International Conference on Networking, Sensing and Control, March 21~23, Taipei, Taiwan.
14. Chen, H.K., and H.W. Chou, (2005), “A Time-Dependent Supply Chain Network Equilibrium Problem,” Global Integrated Supply Chain Systems: Analysis and Design, Y.C. Lan and B. Unhelkar (eds), Idea Group Inc., Hershey, USA, pp. 217-242.
15. Chen, H.K. and H.W. Chou, (2004), “A Solution Algorithm For The Supply Chain Network Equilibrium Problem,” Proceedings of the Eighth Pacific-Asia Conference on Information Systems, Shanghai, China.
16. Chen, H.K., S.Y. Hsiao, M.F. Liao, and C.F. Hsueh, (2003), “Sensitivity Analysis For The Dynamic Capacitated Origin-Destination Estimation Problem,” Journal of the Eastern Asia Society for Transportation Studies, Vol. 5, pp. 1278-1293.
17. Chiou, S.W., (2004), “Bilevel Programming For The Continuous Transport Network Design Problem,” Transportation Research B, 39, 361-383.
18. Cho, H.J., Smith, T.E., Friesz, T.L., (2000), “A Reduction Method For Local Sensitivity Analyses of Network Equilibrium Arc Flows,” Transportation Research B, 34, 31-51.
19. Dong. J., Zhang, D., Nagurney, A., (2004), “A Supply Chain Network Equilibrium Model With Random Demands,” European Journal of Operational Research 156, pp. 194-212.
20. Fiacco, A.V. and Mccormick G.P., (1968), “Nonlinear Programming : Sequential Unconstrained Minimization Techniques, “John Wiley & Sons, New York.
21. Fiacco, A.V., (1976), “Sensitivity Analysis for Nonlinear Programming Using Penalty Methods,” Mathematical Programming, 10(3), pp 287-311.
22. Fiacco A.V., (1983), “Introduction to Sensitivity and Stability Analysis in Nonlinear Programming,” Academic Press, New York.
23. Fisk C. S., (1984), “Game Theory and Transportation Systems Modelling,” Transportation Research, 18B(4), pp. 301-313.
24. Gao, Z.Y., Wu, J.J. and H.J. Sun, (2005), “Solution Algorithm for the Bi-level Discrete Network Design Problem,” Transportation Research 39B, pp. 479-495.
25. Guild Jr., V. D. R., and R. Srivastava, (1997), “An Evaluation of Order Release Strategies in a Remanufacturing Environemt,” Computer Operations Researchs, 24(1), 37-44.
26. Hooke, R. and T. A. Jeeves, (1961), “Direct Search Solution of Numerical and Statistical Problems,” Journal of the ACM, Vol. 8, pp. 212-229.
27. LeBlanc, L.J. and M. Abdulaal, (1979), “Continuous Equilibrium Network Design Models,” Transportation Research 13B, pp. 19-32.
28. LeBlanc, L.J. and M. Abdulaal, (1984), “A Comparison Of User-Optimum Versus System-Optimum Traffic Assignment In Transportation Network Design,” Transportation Research 18B, pp. 115-112.
29. Marcotte P., (1986), “Network Design Problem with Congestion Effects : A Case of Bilevel Programming,” Mathematical Programming, 34(2), pp 142-162.
30. Nagurney, A. and Matsypura, D., (2005), “Global Supply Chain Network Dynamics With Multicriteria Decision-Making Under Risk and Uncertainty,” Transportation Research E, 41, 585-612.
31. Nagurney, A. and F. Toyasaki, (2005), “Reverse Supply Chain Management And Electronic Waste Recycling: A Multitiered Network Equilibrium Framework For E-Cycling,” Transportation Research E, 41, 1-28.
32. Nagurney, A., Dong, J. Zhang, D. (2002), “A supply chain network equilibrium model,” Transportation Research E, 38, 282-213.
33. Nelder, J.A. and R. Mead, (1965), “A Simplex for Function Minimization,” Computer Journal 7, pp. 308-313.
34. Lewis, R. M., V. Torczon and M. W. Trosset, (2000), “Direct Search Methods: Then and Now,” Journal of Computational and Applied Mathematics, Vol. 124, pp. 191-207.
35. Patriksson, M. (2004), “Sensitivity Analysis of Traffic Equilibria,” Transportation Science, pp. 258-281.
36. Penrose, R. (1955), “A Generalized Inverse for Matrices,” Proc. Cambridge Phil. Soc. 51, 406-413.
37. Poorzahedy, H. and M.A. Turnquist, (1982), “Approximate Algorithms for the Discrete Network Design Problem,” Transportation Research 16B, pp. 45-55.
38. Steenbrink, A., (1974), “Transport Network Optimization in the Dutch Integral Transportation Study,” Transportation Research 8B, pp. 11-27.
39. Sheffi, Y. (1985) Urban Transportation Networks: Equilibrium Analysis with Mathematical Programming Methods, Prentice-Hall Inc., Englewood Cliffs, New Jersy.
40. Tobin, R.L., (1986), “Sensitivity Analysis for Variational Inequalities,” Journal of Optimization Theory and Applications, 48(1), pp. 191-204.
41. Tobin, R.L., T. Friesz, (1988), “Sensitivity Analysis For Equilibrium Network Flow,” Transportation Science, 22(4), 242-250.
42. T. Santoso, S. Ahmed, M.Goetschalckx, A. Shapiro, (2005), “A Stochastic Programming Approach For Supply Chain Network Design Under Uncertainty,” European Journal of Operational Research 167, 96-115.
43. Yang, H. and M.G.H. Bell, (2005), “Sensitivity Analysis of Network Traffic Equilibria Revisited: The Corrected Approach,” Submitted to Transportation Science. |