博碩士論文 93322065 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:41 、訪客IP:3.145.180.189
姓名 陳敬文(Jing-Wen Chen)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 逆供應鏈網路雙層規劃模型
(A Bilevel Model of Reverse Supply Chain Networks)
相關論文
★ 圖書館系統通閱移送書籍之車輛途程問題★ 起迄對旅行時間目標下高速公路匝道儀控之研究
★ 結合限制規劃法與螞蟻演算法求解運動排程問題★ 共同邊界資料包絡分析法在運輸業之應用-以國內航線之經營效率為例
★ 雙北市公車乘客知覺服務品質、知覺價值、滿意度、行為意向路線與乘客之跨層次中介效果與調節式中介效果★ Investigating the influential factors of public bicycle system and cyclist heterogeneity
★ A Mixed Integer Programming Formulation for the Three-Dimensional Unit Load Device Packing Problem★ 高速公路旅行時間預測之研究--函數資料分析之應用
★ Behavior Intention and its Influential Factors for Motorcycle Express Service★ Inferring transportation modes (bus or vehicle) from mobile phone data using support vector machine and deep neural network.
★ 混合羅吉特模型於運具選擇之應用-以中央大學到桃園高鐵站為例★ Preprocessing of mobile phone signal data for vehicle mode identification using map-matching technique
★ 含額外限制式動態用路人均衡模型之研究★ 動態起迄旅次矩陣推估模型之研究
★ 動態號誌時制控制模型求解演算法之研究★ 不同決策變數下動態用路人均衡路徑選擇模型之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究根據Nagurney et al.(2005)所提出之逆供應鏈網路均衡,將逆供應鏈網路問題建構為雙層規劃模型。上層為系統最佳化問題,在預算的限制下,以逆供應鏈網路總成本最小為目標;下層為符合Wardrop第二原則的逆供應鏈網路流量均衡問題。最後針對各層流量轉換因子提出一修正式敏感度分析之演算法進行求解。並利用測試範例證實逆供應鏈網路雙層規劃模型之正確性。
摘要(英) This research formulates the reverse supply chain network design problem as a bilevel model. In the upper level, the reverse supply chain network total cost is minimized subject to the budget constraint whereas in the lower level the reverse supply chain network flows are equilibrated in accordance with the Wardrop second principle. A “modified” sensitivity analysis based algorithm, with special treatment on conversion factors from one sector to the next, is proposed for solutions and demonstrated with a numerical example.
關鍵字(中) ★ 逆供應鏈
★ 雙層模型
關鍵字(英) ★ Reverse Supply Chain
★ Bilevel model
論文目次 摘要 i
Abstract ii
誌謝 iii
目錄 v
圖目錄 viii
表目錄 ix
第一章、緒論 1
1.1 研究動機 1
1.2 研究目的 1
1.3 研究範圍與假設 1
1.4 研究方法 4
1.5 研究流程 6
第二章、文獻回顧 7
2.1 逆供應鏈網路均衡模型 7
2.2 網路設計問題 8
2.2.1 最佳化問題 8
2.2.2 雙層規劃模型 8
2.3 變分不等式敏感度分析 9
2.4 小結 11
第三章、逆供應鏈網路均衡模型 12
3.1 模型構建 13
3.1.1 均衡條件 14
3.2 求解演算法 19
3.2.1 對角化過程 19
3.2.2 超級路網表達方式 21
3.2.3 巢式對角化法流程 23
3.3 測試範例 27
3.3.1 輸入資料 27
3.3.2 測試結果 28
3.3.3 結果分析 29
3.4 小結 30
第四章、變分不等式敏感度分析 31
4.1 變分不等式敏感度分析原理 31
4.2 廣義反矩陣 34
4.2.1 減號反矩陣 35
4.2.2 自反矩陣反矩陣 36
4.2.3 最小範數廣義反矩陣 36
4.2.4 最小二乘廣義反矩陣 37
4.2.5 加號廣義反矩陣 38
4.3 以廣義反矩陣進行敏感度分析 41
4.4 修正式敏感度分析 45
4.4.1 運輸網路均衡 45
4.4.2 以行或路徑為基礎的縮減方法應用於敏感度分析 47
4.5 測試範例 51
4.5.1 輸入資料 51
4.5.2 微擾參數ε=0之均衡結果 53
4.5.3 利用廣義反矩陣計算敏感度分析資訊 54
4.5.4 由敏感度分析資訊推估路段流入率 62
4.6 小結 64
第五章、逆供應鏈網路均衡雙層規劃模型 64
5.1 模型構建 65
5.2 模型求解 68
5.3 求解演算法 68
5.4 範例測試 72
5.4.1 輸入路網資料 72
5.4.2 測試結果 75
第六章、結論與建議 78
6.1 結論 78
6.2 建議 79
參考文獻 80
參考文獻 1. 王中允,1999,路段容量限制動態用路人旅運選擇模型之研究,國立中央大學土木工程學系博士論文,中壢。
2. 卓訓榮,1991,「以廣義反矩陣方法探討均衡路網流量的敏感度分析」,運輸計劃季刊,第二十一卷,第一期,頁23-34。
3. 卓訓榮,1992,「最短距離方法與廣義反矩陣敏感性分析方法之比較」,運輸計劃季刊,第二十卷,第一期,頁1-14。
4. 卓訓榮,林培煒,1999,「均衡路網流量敏感度分析路網資訊獨立性之研究」,運輸學刊,第十一卷,第四期,頁73-86。
5. 卓訓榮,羅仕京,1999,「以廣義反矩陣的特性推導路徑非負流量之研究」,運輸學刊,第十一卷,第二期,頁39-48。
6. 周鄭義,1999,動態號誌時制最佳化之研究-雙層規劃模型之應用,國立中央大學土木工程學系碩士論文,中壢。
7. 陳惠國,王中允,1999,「拉氏演算法求解路段容量限制動態用路人路徑選擇問題之比較」,中國土木水利工程學刊。
8. Ahn, B. and Hogan W.W., (1982), “On Convergence of the PIES Algorithm for Computing Equilibria,” Operations Research, Vol. 30, No. 2, pp 281-300.
9. Ben-Ayed, O., (1988), “Bileve Linear Programming : Analysis and Application to the Network Design Problem,” Ph.D Thesis in Business Administration, University of Illinois at Urbana-Champaign.
10. Ben-Ayed, O., (1993), “Bilevel linear programming,” Computers and Operation Research, Vol. 20, pp.485-501.
11. Chen, H.K., and H.W. Chou, (2005), “Supply Chain Network Equilibrium with Asymmetric Variable Demand and Cost Functions,” Working Paper at National Central University, Taiwan.
12. Chen, H.K., (2005), “Formulating the Reverse Supply Chain Network Equilibrium Problem,” Proceedings of the 1st International Conference on Transportation and Logistics, Singapore.
13. Chen, H.K., C.Y. Chou, C.T. Lai, (2004), “A Bilevel Dynamic Signal Timing Optimization Problem,” Proceedings (CD-ROM) of the 2004 IEEE International Conference on Networking, Sensing and Control, March 21~23, Taipei, Taiwan.
14. Chen, H.K., and H.W. Chou, (2005), “A Time-Dependent Supply Chain Network Equilibrium Problem,” Global Integrated Supply Chain Systems: Analysis and Design, Y.C. Lan and B. Unhelkar (eds), Idea Group Inc., Hershey, USA, pp. 217-242.
15. Chen, H.K. and H.W. Chou, (2004), “A Solution Algorithm For The Supply Chain Network Equilibrium Problem,” Proceedings of the Eighth Pacific-Asia Conference on Information Systems, Shanghai, China.
16. Chen, H.K., S.Y. Hsiao, M.F. Liao, and C.F. Hsueh, (2003), “Sensitivity Analysis For The Dynamic Capacitated Origin-Destination Estimation Problem,” Journal of the Eastern Asia Society for Transportation Studies, Vol. 5, pp. 1278-1293.
17. Chiou, S.W., (2004), “Bilevel Programming For The Continuous Transport Network Design Problem,” Transportation Research B, 39, 361-383.
18. Cho, H.J., Smith, T.E., Friesz, T.L., (2000), “A Reduction Method For Local Sensitivity Analyses of Network Equilibrium Arc Flows,” Transportation Research B, 34, 31-51.
19. Dong. J., Zhang, D., Nagurney, A., (2004), “A Supply Chain Network Equilibrium Model With Random Demands,” European Journal of Operational Research 156, pp. 194-212.
20. Fiacco, A.V. and Mccormick G.P., (1968), “Nonlinear Programming : Sequential Unconstrained Minimization Techniques, “John Wiley & Sons, New York.
21. Fiacco, A.V., (1976), “Sensitivity Analysis for Nonlinear Programming Using Penalty Methods,” Mathematical Programming, 10(3), pp 287-311.
22. Fiacco A.V., (1983), “Introduction to Sensitivity and Stability Analysis in Nonlinear Programming,” Academic Press, New York.
23. Fisk C. S., (1984), “Game Theory and Transportation Systems Modelling,” Transportation Research, 18B(4), pp. 301-313.
24. Gao, Z.Y., Wu, J.J. and H.J. Sun, (2005), “Solution Algorithm for the Bi-level Discrete Network Design Problem,” Transportation Research 39B, pp. 479-495.
25. Guild Jr., V. D. R., and R. Srivastava, (1997), “An Evaluation of Order Release Strategies in a Remanufacturing Environemt,” Computer Operations Researchs, 24(1), 37-44.
26. Hooke, R. and T. A. Jeeves, (1961), “Direct Search Solution of Numerical and Statistical Problems,” Journal of the ACM, Vol. 8, pp. 212-229.
27. LeBlanc, L.J. and M. Abdulaal, (1979), “Continuous Equilibrium Network Design Models,” Transportation Research 13B, pp. 19-32.
28. LeBlanc, L.J. and M. Abdulaal, (1984), “A Comparison Of User-Optimum Versus System-Optimum Traffic Assignment In Transportation Network Design,” Transportation Research 18B, pp. 115-112.
29. Marcotte P., (1986), “Network Design Problem with Congestion Effects : A Case of Bilevel Programming,” Mathematical Programming, 34(2), pp 142-162.
30. Nagurney, A. and Matsypura, D., (2005), “Global Supply Chain Network Dynamics With Multicriteria Decision-Making Under Risk and Uncertainty,” Transportation Research E, 41, 585-612.
31. Nagurney, A. and F. Toyasaki, (2005), “Reverse Supply Chain Management And Electronic Waste Recycling: A Multitiered Network Equilibrium Framework For E-Cycling,” Transportation Research E, 41, 1-28.
32. Nagurney, A., Dong, J. Zhang, D. (2002), “A supply chain network equilibrium model,” Transportation Research E, 38, 282-213.
33. Nelder, J.A. and R. Mead, (1965), “A Simplex for Function Minimization,” Computer Journal 7, pp. 308-313.
34. Lewis, R. M., V. Torczon and M. W. Trosset, (2000), “Direct Search Methods: Then and Now,” Journal of Computational and Applied Mathematics, Vol. 124, pp. 191-207.
35. Patriksson, M. (2004), “Sensitivity Analysis of Traffic Equilibria,” Transportation Science, pp. 258-281.
36. Penrose, R. (1955), “A Generalized Inverse for Matrices,” Proc. Cambridge Phil. Soc. 51, 406-413.
37. Poorzahedy, H. and M.A. Turnquist, (1982), “Approximate Algorithms for the Discrete Network Design Problem,” Transportation Research 16B, pp. 45-55.
38. Steenbrink, A., (1974), “Transport Network Optimization in the Dutch Integral Transportation Study,” Transportation Research 8B, pp. 11-27.
39. Sheffi, Y. (1985) Urban Transportation Networks: Equilibrium Analysis with Mathematical Programming Methods, Prentice-Hall Inc., Englewood Cliffs, New Jersy.
40. Tobin, R.L., (1986), “Sensitivity Analysis for Variational Inequalities,” Journal of Optimization Theory and Applications, 48(1), pp. 191-204.
41. Tobin, R.L., T. Friesz, (1988), “Sensitivity Analysis For Equilibrium Network Flow,” Transportation Science, 22(4), 242-250.
42. T. Santoso, S. Ahmed, M.Goetschalckx, A. Shapiro, (2005), “A Stochastic Programming Approach For Supply Chain Network Design Under Uncertainty,” European Journal of Operational Research 167, 96-115.
43. Yang, H. and M.G.H. Bell, (2005), “Sensitivity Analysis of Network Traffic Equilibria Revisited: The Corrected Approach,” Submitted to Transportation Science.
指導教授 陳惠國(Huey-Kuo Chen) 審核日期 2006-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明