參考文獻 |
[1] G. Piatetsky-Shapiro and W. J. Fayyad, and P. Smith, From data mining to knowledge discovery: An overview. In U.M. Fayyad, F. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, editors, Advances in knowledge Discovery and Data Mining, page 1-35. 1996, AAAI/MIT Press.
[2] J. Han, J. Pei, Y. Yin, Mining frequent patterns for relational databases, in: Proceedings of ACM-SIGMOD International Conference on Management of Data, 2000, pp. 1–12.
[3] M.-S. Chen, J. Han, P. Yu, Data mining: An overview from a database perspective, IEEE Transactions on Knowledge and Data Engineering 8 (6) (1996) 866–883.
[4] R. Agrawal, I. Imielinski, A. Swami, Mining association rules between sets of items in large databases, in: Proceedings of International Conference on Management of Data, 1993, pp. 207–216.
[5] R. S. Michalski, J. G. Carbonell, and T. M. Mitchell, Machine Learning: An Artificial Intelligence Approach, Vol. 1. San Mateo, CA: Morgan Kaufmann, 1983.
[6] J. Han, M. Kamber, Data Mining: Concepts and Techniques, San Francisco, CA: Morgan Kaufmann, 2001.
[7] R. Agrawal, R. Srikant, Fast algorithm for mining association rules in large databases, Tech. Rep. RJ 9839, IBM Almaden Research center (1994).
[8] P. Shenoy, et al., Turbo-charging vertical mining of large databases, in: Proceedings of ACM SIGMOD International Conference in Management of Data (SIGMOD’00), 2000.
[9] J. Han, J. Pei, Y. Yin, R. Mao, Mining frequent patterns without candidate generation: A frequent-pattern tree approach, Data Mining and Knowledge Discovery 8 (2004) 53–87.
[10] A. Gupta, V. Harinarayan, and D. Quass. Aggregate-Query processing in data warehousing environment. In Proc. 21st Int. Conf. Very Large Data Bases. Pages 358-369, Zurich, Switzerland, Sept. 1995.
[11] V. Harinarayan, J.D. Ullman, and A. Rajaraman. Implementing data cubes efficiently. In proc. 1996 Int’l Conf. on Data Mining and Knowledge Discovery (KDD’96) Portland, Oregon, August 1996.
[12] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, A. Verkamo, Fast discovery of association rules., in: Advances in knowledge Discovery and Data Mining., AAAI/MIT Press, 1996, pp. 307–328.
[13] H. Mannila, H. Toivonen, A. Verkamo, Efficient algorithms for discovering association rules, in: Proceedings AAAI’94 in Databases (KDD’94), 1994, pp. 220–231.
[14] S. Brin, R. Motwani, C. Silverstein, Efficiently mining long patterns from databases, in: Proceedings of ACM SIGMOD International Conference in Management of Data(SIGMOD’97), 1997, pp. 265–276.
[15] C. Silversten, S. Brin, R. Motwani, J. Ullman, Scalable techniques for mining causal structures, in: Proceedings of International Conferences in Very Large Data Bases (VLDB98), 1998, pp. 594–605.
[16] R. Argawal, R. Srikant, Mining sequential patterns, in: Proceedings of International Conference on Data Engineering (ICDE’95), 1995, pp. 3–14.
[17] H. Mannila, H. Toivonen, A. Verkamo, Discovery of frequent episodes in event sequences, Data Mining and Knowledge Discovery 1 (1997) 259–289.
[18] B. Lent, A. Swami, J. Widom, Clustering association rules, in: Proceedings of International Conference on Data Engineering (ICDE’97), 1997, pp. 220–231.
[19] M. Kamber, J. Han, J. Chiang, Metarule-guided mining of multi-dimensional association rules using data cubes, in: Proceedings of International Conference on Knowledge Discovering and Data Mining (KDD’97), 1997, pp. 207–210.
[20] R. Bayardo, Beyond market basket: generalizing association rules to correlations, in: Proceedings of ACM SIGMOD International Conference in Management of Data (SIGMOD’98), 1998, pp. 85–93.
[21] J. Han, G. Dong, Y. Yin, Efficient mining of partial periodic patterns in the time series database, in: Proceedings of International Conference on Data Engineering (ICDE’99), 1999, pp. 106–115.
[22] G. Dong, J. Li, Efficient mining of emerging patterns., in: Proceedings of International Conference on Knowledge Discovering and Data Mining (KDD’99), 1999, pp. 43–52.
[23] S. Sarawagi, S. Thomas, R. Agrawal, Integrating association rule mining with relational database systems: Alternatives and implications, in: Proceedings of ACM SIGMOD International Conference in Management of Data(SIGMOD’98), 1998, pp. 343–354.
[24] G. Grahne, L. Lakshmanan, X.Wang, Efficient mining of constrained correlated sets., in: Proceedings of International Conference on Data Engineering (ICDE’00), 2000, pp. 512–521.
[25] M. Zaki, K. Gouda, Fast vertical mining using diffsets, in: Proceedings of International Conference on Knowledge Discovering and Data Mining (KDD’03), 2003.
[26] D. Burdick, M. Calimlim, J. Gehrke, Mafia: a maximal frequent itemset algorithm for transactional databases, in: Proceedings of International Conference on Data Engineering (ICDE’01), 2001.
[27] M. Zaki, Scalable algorithms for association mining, IEEE Transactions on Knowledge and Data Engineering 12 (3) (2000) 372–390.
[28] R. Agrawal, K. Shim, Developing tightly-coupled data mining applications on a relational database system, in: Proceedings of International Conference on Knowledge Discovering and Data Mining (KDD’96), 1996.
[29] J. Han, Y. Fu, W. Wang, K. Koperski, O. Zaiane, Dmql: A data mining query language, in: In 1996 SIGMOD’96Workshop on Research Issues on Data Mining and Knowledge Discovery (DMKD’96), 1996.
[30] R. Meo, G. Psaila, S. Ceri, A new sql-like operator for mining association rules, in: Proceedings of International Conference in Very Large Data Bases (VLDB’96), 1996.
[31] J. Han and Y. Fu. Dynamic generation and refinement of concept hierarchies for knowledge discovery in databases. In Proc. AAAI’94 Workshop on Knowledge Discovery in Databases (KDD’94), pages 158-168, Seattle, WA, July 1994.
[32] J. Han and Y. Fu. Exploration of the power of attribute-oriented induction in data mining, In U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, editors, Advances in Knowledge Discovery and Data Ming, pages 399-421. AAAI/MIT Press, 1996.
[33] J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann.
[34] J. R. Quinlan. Induction of decision trees. Machine Learning, 1:81-106, 1986.
[35] R. Argawal, R. Srikant, Fast algorithms for mining associations rules, in: Proceedings of International Conference in Very Large Data Bases, 1994, pp.487–499.
[36] U. M. Fayyad and K. B. Irani. Multi-interval discretization of continuous-valued attributes for classification learning. Proceedings of International Joint Conference on Artificial Intelligence (IJCAI-93), pp. 1022-1029, 1993
[37] A. A. Freitas. Understanding the Crucial Role of Attribute Interaction in Data Mining. Artificial Intelligence Review, 16(3), Nov. 2001, 177-199.
[38] David J.C. MaCay, Information Theory, Inference, Learning Algorithms. The 6th edition, Cambridge University Press, September 2003.
[39] R. Agrawal, T. Imielinski, & A. Swami, Database mining: a performance perspective. IEEE Transactions on knowledge and Data Engineering, 5(6), 1993, 914-925
[40] J. C. Shafer, R. Agrawal, & M. Mehta, SPRINT: A scalable parallel classifier for data mining. Proceedings of the 22nd International Conference on Very Large Databaes (pp.514-555). 1996, Mumbai(Bombay), India.
[41] M. Wang, B. Iyer, & J.S. Vitter, Scalable mining for classification rules in relation databases. Proceedings of International Database Engineering and Applications Symposium(pp. 58-67). 1998, Cardiff, Wales, UK |