博碩士論文 93421057 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:18.188.110.150
姓名 林珊伃(San-Yu Lin)  查詢紙本館藏   畢業系所 企業管理學系
論文名稱 以序列資料為基礎的推薦系統之研究
(Collaborative Filtering Recommendation Systems with Sequence Data)
相關論文
★ 在社群網站上作互動推薦及研究使用者行為對其效果之影響★ 以AHP法探討伺服器品牌大廠的供應商遴選指標的權重決定分析
★ 以AHP法探討智慧型手機產業營運中心區位選擇考量關鍵因素之研究★ 太陽能光電產業經營績效評估-應用資料包絡分析法
★ 建構國家太陽能電池產業競爭力比較模式之研究★ 以序列採礦方法探討景氣指標與進出口值的關聯
★ ERP專案成員組合對績效影響之研究★ 推薦期刊文章至適合學科類別之研究
★ 品牌故事分析與比較-以古早味美食產業為例★ 以方法目的鏈比較Starbucks與Cama吸引消費者購買因素
★ 探討創意店家創業價值之研究- 以赤峰街、民生社區為例★ 以領先指標預測企業長短期借款變化之研究
★ 應用層級分析法遴選電競筆記型電腦鍵盤供應商之關鍵因子探討★ 以互惠及利他行為探討信任關係對知識分享之影響
★ 結合人格特質與海報主色以類神經網路推薦電影之研究★ 資料視覺化圖表與議題之關聯
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在九十年代中期,推薦系統開始被學者們關注進而研究。推薦系統的主要任務即是找出客戶的潛在需求與行為,並透過這些資訊幫助企業或組織提高產品銷售量或客戶服務品質。現今,主要有三種不同的推薦系統,分別為Contents-based、Collaborative-filtering 和 Hybrid recommendation。其中Collaborative-filtering推薦系統是最為普及的類型,但仍存在一些限制。第一,其無法依序進行推薦,例如:買床之後應推薦床單。第二,此類型的推薦系統必須在大量使用者的情況之下才能進行有效的推薦。而在此篇論文中,我們把重心放在解決第一個限制,並提出一個序列相似度的計算方式。
在最後的實驗中我們與傳統的Collaborative-filtering推薦系統進行校能的比較,在實驗中,我們有較佳的效能。
摘要(英) In the mid-1990s, recommender systems have been concerned by researchers. The main task of recommender system is providing information, which can matches latent interests of customers. The recommender system is aimed to suggest and provide information of the products to customers to help them find product which they need quickly. There are mainly three kinds of methods in recommender system: Contents-based, Collaborative-filtering and Hybrid recommendation.
The collaborative filtering is the most popular and successful recommender system, it still has several limitations. First, there is no way to recommend items in sequence. Second, the success of the collaborative recommender system depends on the availability of mass users. In this paper, we focus on the first limitations and attempt to remedy this limitation of collaborative-filtering recommendation by developing the novel approach to group these sequential transactions. The key idea of our approach from the following important observation: As we know intimately, the behavior for purchasing is influenced by sequence relationship among items. For instance, such as customer may buy jelly after buying toast. It is very useful for us to understand the motivation for purchasing which is hidden behind the behavior for purchasing. It means that we need to recognize what sequential purchase behaviors is user actually follows. Then, we use that the information of customers to recommend items to customers.
Besides, we offer a new measure to compute similarity between sequences. Differing from other similarity measures, we provide a distance-sensitive similarity measure. Thus, the performance of our measure is better.
關鍵字(中) ★ 推薦系統 關鍵字(英) ★ Recommender system
論文目次 Chapter1. Introduction 1
Chapter2. Related works 4
2.1. Categories of recommender systems 4
2.1.1 Content-based recommender system 4
2.1.2 Collaborative filtering recommender system 5
2.1.3 Hybrid recommender system 7
2.2. Mining sequential patterns 8
2.3. Sequential similarity 9
Chapter3. Problem definition 10
Chapter4. Methodology 12
4.1 The purchasing sequence of customers 13
4.2 Sequence-based similarity 14
4.3 Sequential pattern-based recommendation 15
Chapter5. Evaluation 16
5.1 Generation of Synthetic Data 16
5.2 Parameters 17
5.2.1 Minimum support (M) 17
5.2.2 Top-n (P) 18
5.2.3 Cluster numbers (K) 19
5.3 Evaluation measures 21
5.4 Evaluate result 22
Chapter6. Conclusions 24
Reference 25
Appendix A. the processes of experiment (our approach) 28
Appendix B. the processes of experiment (traditional CF) 44
參考文獻 [1] Gediminas Adomavicius, Alexander Tuzhilin, “Toward the Next Generation of Recommender Systems: A Survey of the Sate-of-the-Art and Possible Extensions,” IEEE Transcations on Knowledge and Data Engineering, 2005, pp: 734-749
[2] Yeong Bin Cho, Yoon Ho Cho, Soung Hie Kim, “Mining changes in customer buying behavior for collaborative recommendations,” Expert Systems with Application, 2005, pp: 359-369
[3]Seung-Joon Oh ., Jae-Yearn Kim, “A hierarchical clustering algorithm for categorical sequence data,” Information Processing Letters ,2004, pp: 135–140
[4] Berson,A., Smith, S., and Thearling, K. Building Data Mining Applications for CRM, 1999
[5] Hirji, k. “Exploring Data Mining Implementation,” Communications of the ACM, 2001, pp: 87-93.
[6] Ansari, S., Kohavi, R.,Mason, L., and Zheng, Z. “Integrating E-Commerce and Data Mining: Architecture and Challenges,” IEEE, 2001, pp:27-34.
[7] Yasuo H., Takao T., Yukichi O. “Recommending Books of Revealed and Latent Interests in E-Commerce,” IEEE, 2000, pp: 1632-1637.
[8] Yu, S. P. “Data Mining and Personalization Technologies,” IEEE, 1999,pp: 6-13
[9] Balabanovic, M., Shoham, Y. “Fab: Content-Based, Collaborative Recommendation,” Communications of the ACM, 1997,pp: 66-72
[10] Herlocker, J., Konstan, J., and Riedl, J. “Explaining Collaborative Filtering Recommendations,” In Proceedings of CSCW ’00, 2000,pp:241-247
[11] Goldberg, D., Nichols, D., Oki, B. M., and Terry, D. “Using Collaborative Filtering to weave an Information Tapestry,” Communications of the ACM, 1992, pp: 61-70.
[12] Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., and Riedl, J. “GroupLens: An Open Architecture for Collaborative Filtering of Netnews,” In Proceedings of ACM CSCW ’94 Conference on Computer-Supported Cooperative Work, 1994, pp: 175-186.
[13] Breese, J.S., Heckerman, D., and Kadie, C. “Empirical Analysis of Predictive Algorithms for Collaborative Filtering,” In Proceedings of the 14th conference on Uncertainty in Artificial Intelligence, 1998.
[14] Zeng, C., Xing, C. X., and Zhou, L. Z. “Similarity Measure and Instance Selection for Collaborative Filtering,” Communications of the ACM, 2003, pp:652-658
[15] Sarwar, B., Konstan, J., Borchers, A., Herlocker, J., Miller, B., and Riedl, J. “Using Filtering Agents to Improve Prediction Quality into the GroupLens Research Collaborative Filtering System,” In Proceedings of CSCW ’98, 1998, pp: 1-10.
[16] Good, N., Schafer, B., Konstan, J., Borchers, A., Sarwar, B., Herlocker, J., and Riedl, J. “Combing Collaborative Filtering With Personal Agents for Better Recommendations, “ In Proceedings of the AAAI ’99 conference, 1999.
[17] Sarwar, B., Karypis, G., Konstan, J., and Riedl, J. “Analysis of Recommendation Algorithms for E-Commernce,” In Proceedings of the ACM EC ’00 Conference, 2000, pp: 158-167.
[18]Sarwar, B., Karypis, G., Konstan, J., and Riedl, J. “Application of Dimensionality Reduction Recommender System – A Case Study,” In ACM WebKDD Workshop, 2000.
[19]Sarwar, B., Karypis, G., Konstan, J., and Riedl, J. “Item-based Collaborative Filtering Recommendation Algorithms, “ Communications of the ACM, 2001, pp:285-295
[20] Jonathan L. Herlocker, Joseph A. Konstan, Al Borchers, and Riedl, J. “An algorithmic Framework for Performing Collaborative Filtering,” In Proceedings of the 22nd annual international ACM SIGIR conference, pp230-237.
[21] Pawlak, Z. Grzymala-busse, J., Slowinski, R., and Ziarko, W. “Rough Set,” Communications of the ACM, 1995, pp: 89-95.
[22] Grazymala-Busse, J., Ziarko, W. “Data Mining and Rough Set Theory,” Communication of the ACM, 2000, pp: 108-109
[23] Qiankun Zhao, Sourav S. Bhowmick, “Sequential Pattern Mining: A Survey”, Technical Report, 2003
指導教授 許秉瑜(Ping-Yu Hsu) 審核日期 2006-6-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明