論文目次 |
Contents
1 Introduction and Motivation 1
1.1 Convertible Bond . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Credit Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2 Literature 3
2.1 Credit Risk Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.1 Firm Value Model . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.2 First Passage Time Model . . . . . . . . . . . . . . . . . . . . . 4
2.1.3 Intensity Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Pricing Convertible Bonds . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.1 Finite Dierence and Lattice Method . . . . . . . . . . . . . . . 7
2.2.2 Monte Carlo Simulation . . . . . . . . . . . . . . . . . . . . . . 8
3 Notation, Assumption, and Algorithm 8
3.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.1.1 The Conversion Condition . . . . . . . . . . . . . . . . . . . . . 10
3.1.2 The Call Condition . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.1.3 The Put Condition . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.1.4 The Maturity Condition . . . . . . . . . . . . . . . . . . . . . . 13
3.1.5 The Bankruptcy Condition . . . . . . . . . . . . . . . . . . . . . 13
3.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4 Result 21
4.1 The Price of Convertible Bonds . . . . . . . . . . . . . . . . . . . . . . 21
4.2 The Eect of the Volatility of the Firm's Value . . . . . . . . . . . . . 22
4.3 The Duration of Convertible Bonds . . . . . . . . . . . . . . . . . . . . 24
4.4 Convexity of Convertible Bonds . . . . . . . . . . . . . . . . . . . . . . 29
5 Conclusion 30
A Appendix 33
List of Figures
1 The Value of Convertible Bonds, r 0 = 0:08, q = 18:52. . . . . . . . . . . . 23
2 The Value of Convertible Bonds at Dierent Initial Firm Values, r 0 = 0:08,
q = 18:52. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3 The Duration of a Straight Bond at Dierent Coupon Rates, V 0 = 50m,
˙V = 0:1, r 0 = 0:08, q = 18:52. . . . . . . . . . . . . . . . . . . . . . . . . 25
4 The Duration of Convertible Bonds at Dierent Coupon Rates, V 0 = 50m,
˙V = 0:1, r 0 = 0:08, q = 18:52. . . . . . . . . . . . . . . . . . . . . . . . . 25
5 The Duration of Convertible Bonds at Dierent Coupon Ratios, V 0 = 50m,
˙V = 0:7, q = 18:52, r 0 = 0:08. . . . . . . . . . . . . . . . . . . . . . . . . 26
6 The Duration of Convertible Bonds at Dierent Volatility and Coupon Rates,
V 0 = 50m, q = 18:52, r 0 = 0:08. . . . . . . . . . . . . . . . . . . . . . . . 27
7 The Duration of Convertible Bonds at Dierent Coupon Ratios, V 0 = 50m,
˙V = 0:1, q = 18:52, r 0 = 0:08. . . . . . . . . . . . . . . . . . . . . . . . . 28
8 The Duration of Convertible Bonds at Dierent Initial Risk-Free Rates, V 0 =
50m, ˙V = 0:1, q = 18:52. . . . . . . . . . . . . . . . . . . . . . . . . . . 29
9 The Duration of Convertible Bonds with Dierent Features, V 0 = 50m, q =
18:52, ˙V = 0:2, r = 0:08. . . . . . . . . . . . . . . . . . . . . . . . . . . 30
10 The Convexity of Convertible Bonds at Dierent Volatility and Coupon Rates,
V 0 = 50m, q = 18:52, r = 0:08. . . . . . . . . . . . . . . . . . . . . . . . . 31 |
參考文獻 |
Reference
1. Ammann, M. (1999): Pricing Derivative Credit Risk," Springer publication.
2. Black, F., and J. C. Cox (1976): Valuing Corporate Securities: Some Eects of
Bond Indenture Provisions," Journal of Finance, 31(2), 351-367.
3. Brennan, M. J., and E. S. Schwartz (1977): Convertible bonds: Valuation and
optimal strategies for call and conversion," Journal of Finance, 32, 1699-1715.
4. Brennan, M. J., and E. S. Schwartz (1980): Analyzing convertible bonds," Jour-
nal of Financial and Quantitative Analysis, 15, 907-929.
5. Briys, E., and F. de Varenne (1997): Valuing Risky Fixed Rate Debt: An Ex-
tension." Journal of Financial and Quantitative Analysis, 32(2), 239-248.
6. Cheung, W. and I. Nelken (1996): Costing the Converts," Over the Rainbow
Developemts in Exotic Option and Complex Swap.
7. Cooper, I. and M. Martin (1996): Default Risk and Derivative Products," Ap-
plied Mathematical Finance, 3, 53-74.
8. Cox, J. C., J. E. Ingersoll, and S. A. Ross (1985): A Theory of the Term Structure
of Interest Rates," Econometrica, 36(7), 385-407.
9. Jarrow, R. A., D. Lando, and S. M. Turnbull (1997): A Markov Model for
the Term Structure of Credit Risk Spreads, Review of Financial Studies, 10(2),
481-523.
10. Jarrow, R. A., and S. M. Turnbull (1995): Pricing Derivatives on Financial
Securities Subject to Credit Risk," Journal of Finance, 50(1), 53-85.
11. Kalotay, A. J., G. O. Williams, and F. J. Fabozzi (1993): A Model for Valuing
Bonds and Embedded Options," Financial Analysts Journal, May/June, 35-46.
12. Longsta, F. A., and E. S. Schwartz (1995): A Simple Approach to Valuing
Risky Fixed and Floating Rate Debt," Journal of Finance, 50(3), pp. 789-819.
13. Longsta, F. A., and E. S. Schwartz (2001): Valuing American Options by
Simulation: A Simple Least-Squares Approach," The Review of Financial Studies,
14(1), 113-147.
14. Merton, R. C. (1974): On the Pricing of Corporate Debt: The Risk Structure of
Interest Rates," Journal of Finance, 2(2), 449-470.
15. Nelken, I. (2000): Handbook of Hybrid Instruments," John Wiley and Sons.
LTD publication.
16. Vasicek, O. (1977): An Equilibrium Characterization of the Term Structure,"
Journal of Financial Economics, 5(2), 177-188. |