博碩士論文 88425006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:57 、訪客IP:3.143.7.53
姓名 柯錫安(Shi-An Ko )  查詢紙本館藏   畢業系所 財務管理研究所
論文名稱 信用風險下可轉換公司債之評價
(Pricing Convertible Bonds with Credit Risk)
相關論文
★ 勞工退休金條例草案之轉換選擇權的評價與分析★ 一般化的美式選擇權解析上界
★ 台灣加權指數波動率之實證研究★ 蒙地卡羅模擬在選擇權評價上之運用
★ 固定匯率下跨國股酬交換之評價★ 控制變數法在數值選擇權評價模型之應用分析
★ 跨通貨利率衍生性商品之評價與討論★ GARCH選擇權評價模型:修正、應用和實證研究
★ 可轉換債券之定價與拆解★ 高斯數值積分在選擇權評價上的應用研究
★ 指數期貨避險效率之比較:台灣與新加坡指數期貨市場之實證★ 信用衍生性金融商品之研究:CB Asset Swap 及CDO
★ 選擇權價格之資訊內涵 --實際波動率與未來選擇權價格之預測★ 選擇權實證研究:以臺指選擇權為例
★ 考慮交易成本與流動性風險成本下選擇權複製策略之比較★ 選擇權實證研究-以S&P500指數選擇權為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 信用風險在評價可轉公司債的過程中扮演非常重要的角色。在本論文中,我們利用Longstaff 和 Schwartz (1995) 提出的信用風險模型來評估可轉換公司債的信用風險。
除此之外,本文還利用Longstaff 和 Schwartz (2001) 提出的最小方差法來處理可轉換公司債本身的複雜特性,並針對公司價值波動性及可轉債所付票息的高低,對於可轉債的存續期間的影響進行研究。
結果顯示,可轉換公司債的存續期間在某些條件下,將隨著所付票息的增加而增加
摘要(英) Credit risk plays a very important role in the valuation of convertible bonds. In this
study we use the model that was developed by Longsta_ and Schwartz (1995) to esti-
mate the credit risk of convertible bonds. Moreover, the Least-Square-Method (LSM)
proposed by Longsta_ and Schwartz (2001) is used to handle the hybrid features of
convertible bonds. We also examine the e_ect of volatility on the value of convertible
bonds and the duration of convertible bonds for di_erent parameters. The result shows
that the value of convertible bonds may increase or decrease as the volatility of the
firm's value increases. The price of the convertible bonds is the result of a ombination of the debt part and the option part. Moreover, the duration of the convertible bonds,
at low volatility, increases as the coupon rate increases when the other conditions are
the same.
關鍵字(中) ★ 信用風險
★  可轉公司債
★  存續期間
★  模擬
關鍵字(英) ★ convertible
★  convertible bonds
★  credit risk
★  duration
★  simulation
論文目次 Contents
1 Introduction and Motivation 1
1.1 Convertible Bond . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Credit Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2 Literature 3
2.1 Credit Risk Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.1 Firm Value Model . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.2 First Passage Time Model . . . . . . . . . . . . . . . . . . . . . 4
2.1.3 Intensity Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Pricing Convertible Bonds . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.1 Finite Dierence and Lattice Method . . . . . . . . . . . . . . . 7
2.2.2 Monte Carlo Simulation . . . . . . . . . . . . . . . . . . . . . . 8
3 Notation, Assumption, and Algorithm 8
3.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.1.1 The Conversion Condition . . . . . . . . . . . . . . . . . . . . . 10
3.1.2 The Call Condition . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.1.3 The Put Condition . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.1.4 The Maturity Condition . . . . . . . . . . . . . . . . . . . . . . 13
3.1.5 The Bankruptcy Condition . . . . . . . . . . . . . . . . . . . . . 13
3.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4 Result 21
4.1 The Price of Convertible Bonds . . . . . . . . . . . . . . . . . . . . . . 21
4.2 The Eect of the Volatility of the Firm's Value . . . . . . . . . . . . . 22
4.3 The Duration of Convertible Bonds . . . . . . . . . . . . . . . . . . . . 24
4.4 Convexity of Convertible Bonds . . . . . . . . . . . . . . . . . . . . . . 29
5 Conclusion 30
A Appendix 33
List of Figures
1 The Value of Convertible Bonds, r 0 = 0:08, q = 18:52. . . . . . . . . . . . 23
2 The Value of Convertible Bonds at Dierent Initial Firm Values, r 0 = 0:08,
q = 18:52. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3 The Duration of a Straight Bond at Dierent Coupon Rates, V 0 = 50m,
˙V = 0:1, r 0 = 0:08, q = 18:52. . . . . . . . . . . . . . . . . . . . . . . . . 25
4 The Duration of Convertible Bonds at Dierent Coupon Rates, V 0 = 50m,
˙V = 0:1, r 0 = 0:08, q = 18:52. . . . . . . . . . . . . . . . . . . . . . . . . 25
5 The Duration of Convertible Bonds at Dierent Coupon Ratios, V 0 = 50m,
˙V = 0:7, q = 18:52, r 0 = 0:08. . . . . . . . . . . . . . . . . . . . . . . . . 26
6 The Duration of Convertible Bonds at Dierent Volatility and Coupon Rates,
V 0 = 50m, q = 18:52, r 0 = 0:08. . . . . . . . . . . . . . . . . . . . . . . . 27
7 The Duration of Convertible Bonds at Dierent Coupon Ratios, V 0 = 50m,
˙V = 0:1, q = 18:52, r 0 = 0:08. . . . . . . . . . . . . . . . . . . . . . . . . 28
8 The Duration of Convertible Bonds at Dierent Initial Risk-Free Rates, V 0 =
50m, ˙V = 0:1, q = 18:52. . . . . . . . . . . . . . . . . . . . . . . . . . . 29
9 The Duration of Convertible Bonds with Dierent Features, V 0 = 50m, q =
18:52, ˙V = 0:2, r = 0:08. . . . . . . . . . . . . . . . . . . . . . . . . . . 30
10 The Convexity of Convertible Bonds at Dierent Volatility and Coupon Rates,
V 0 = 50m, q = 18:52, r = 0:08. . . . . . . . . . . . . . . . . . . . . . . . . 31
參考文獻 Reference
1. Ammann, M. (1999): Pricing Derivative Credit Risk," Springer publication.
2. Black, F., and J. C. Cox (1976): Valuing Corporate Securities: Some Eects of
Bond Indenture Provisions," Journal of Finance, 31(2), 351-367.
3. Brennan, M. J., and E. S. Schwartz (1977): Convertible bonds: Valuation and
optimal strategies for call and conversion," Journal of Finance, 32, 1699-1715.
4. Brennan, M. J., and E. S. Schwartz (1980): Analyzing convertible bonds," Jour-
nal of Financial and Quantitative Analysis, 15, 907-929.
5. Briys, E., and F. de Varenne (1997): Valuing Risky Fixed Rate Debt: An Ex-
tension." Journal of Financial and Quantitative Analysis, 32(2), 239-248.
6. Cheung, W. and I. Nelken (1996): Costing the Converts," Over the Rainbow
Developemts in Exotic Option and Complex Swap.
7. Cooper, I. and M. Martin (1996): Default Risk and Derivative Products," Ap-
plied Mathematical Finance, 3, 53-74.
8. Cox, J. C., J. E. Ingersoll, and S. A. Ross (1985): A Theory of the Term Structure
of Interest Rates," Econometrica, 36(7), 385-407.
9. Jarrow, R. A., D. Lando, and S. M. Turnbull (1997): A Markov Model for
the Term Structure of Credit Risk Spreads, Review of Financial Studies, 10(2),
481-523.
10. Jarrow, R. A., and S. M. Turnbull (1995): Pricing Derivatives on Financial
Securities Subject to Credit Risk," Journal of Finance, 50(1), 53-85.
11. Kalotay, A. J., G. O. Williams, and F. J. Fabozzi (1993): A Model for Valuing
Bonds and Embedded Options," Financial Analysts Journal, May/June, 35-46.
12. Longsta, F. A., and E. S. Schwartz (1995): A Simple Approach to Valuing
Risky Fixed and Floating Rate Debt," Journal of Finance, 50(3), pp. 789-819.
13. Longsta, F. A., and E. S. Schwartz (2001): Valuing American Options by
Simulation: A Simple Least-Squares Approach," The Review of Financial Studies,
14(1), 113-147.
14. Merton, R. C. (1974): On the Pricing of Corporate Debt: The Risk Structure of
Interest Rates," Journal of Finance, 2(2), 449-470.
15. Nelken, I. (2000): Handbook of Hybrid Instruments," John Wiley and Sons.
LTD publication.
16. Vasicek, O. (1977): An Equilibrium Characterization of the Term Structure,"
Journal of Financial Economics, 5(2), 177-188.
指導教授 張森林(San-Lin Chung) 審核日期 2001-6-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明