博碩士論文 91428006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:24 、訪客IP:3.144.109.147
姓名 張育瑞(Yu-Jui Chang)  查詢紙本館藏   畢業系所 財務金融學系
論文名稱 市場利率模型下利率上限契約的評價與避險
(Pricing and Hedging Interest Rate Caps in LIBOR Market Model)
相關論文
★ 市場利率模型對區間型計息債券之定價及分析★ 標的物相關係數對合成式債務抵押債券及一籃子違約交換訂價的影響
★ 擔保債務憑證市場價格隱含之相關係數結構★ 保險公司資產配置準則之分析
★ 鞍點近似法於擔保債權憑證之評價與避險★ 避險基金資產配置分析應用極值理論
★ 抵押房貸證劵化之評價★ 外匯市場的遠期與期貨價格差異:逐日結算效果的探討
★ 雙層擔保債務憑證評價與敏感性分析★ 合成式擔保債務憑證內非標準型分劵之定價與避險
★ 應用蒙地卡羅法對HJM 模型下的利率衍生性商品定價★ 利率上限及交換選擇權之定價-多因子市場利率模型
★ 固定比例投資組合保險策略在合成型擔保債權憑證權益分券之適用性★ 應用隨機跳躍模型評價死亡率商品
★ 修改Hull-White模型評價固定期間信用違約交換與信用違約交換選擇權★ 權益違約交換之評價
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文透過蒙地卡羅模擬探討在市場利率模型下利率上限契約的評價與避險。吾人將本論文分為兩部分分析,第一部分著重在間斷型態利率界限選擇權的評價。由於界限選擇權相對於標準歐式選擇權來的便宜,而成為近年來市場上風險管理者所喜愛的避險工具。因此我們將探討隨著市場利率模型中遠期利率波動度的變動,對間斷型態界限利率上限選擇權價值的影響。第二部分著重在利率上限契約的避險。我們選用不同到期日的零息債券當作避險工具,至於這些零息債券的到期日及數目的選擇則是我們所要討論的主題。由模擬的結果顯示,我們可簡化成只選用四張不同到期日的債券便可達到與選用N+1張不同到期日債券相似的結果(N為利率上限契約的重設次數)。
摘要(英) In this paper, the LIBOR Market Model is implemented to price and hedge interest rate caps by Monte Carlo simulation. The study falls into two parts. In the first part, we focus on pricing discrete interest rate barrier caps. Barrier caps, less expensive than vanilla caps, have become very popular in recent year as useful hedging instruments for risk management strategies, and we use Monte Carlo procedure to value discrete barrier caps based on the LIBOR Market Model. In the second part of the study, we focus on the hedging of vanilla caps. The choices of the number and maturity of the hedging instruments which use the zero coupon bonds are the subject in this paper. We replicate numbers of hedging portfolios of interest rate caps and test the hedging performance of these portfolios by simulation. The numerical results of the hedging of interest rate caps show that we can simplify zero coupon bonds with N+1 maturities to be using zero coupon bonds with four maturities. Here, N is the number of reset dates. The result suggests that we can choose zero coupon bonds with four maturities, as hedging instruments of interest rate cap, mature most closely at the initial and end life of the interest rate cap respectively.
關鍵字(中) ★ 利率上限契約
★ 蒙地卡羅模擬
★ 市場利率模型
★ 利率界限上限契約
關鍵字(英) ★ LIBOR Market Model
★ Monte Carlo Simulation
★ interest rate cap
★ interest rate barrier cap
論文目次 Contents
1. Introduction………………………………………………………………………1
2. Interest Rate Cap and Discrete Barrier Cap Agreements……………………4
2.1 Interest Rate Caps………………………………………...………………4
2.2 Discrete Barrier Interest Rate Caps………………...……………………6
3. The Model……………………………………………………………………8
3.1 LIBOR Market Model…………………………………………………..8
3.2 Interest Rate Cap Prices…………………….………………………11
4. Simulation………………………………………………………………………14
4.1 Simulation Routine……………………………………………………….14
4.2 Discounting Procedures………………………………….…………16
5. Numerical Results……………………………………………………………..18
5.1 Discrete Barrier Caps…………………………………………………...18
5.2 Effects of Volatility Structures………………………………………….19
6. Hedging Strategy………………………………………………………………23
6.1 Hedging Portfolios Constructions………………………………………23
6.2 Hedging Performance……………………………………………………26
7. Conclusion……………………………………………………………………….40
Reference…………………………………………………………………………….41
Table Contents
Table 4.1 Paths of LIBOR rates…………...…………………………………………16
Table 5.1 Prices of discrete barrier caps…….….……………….…………….…..…19
Table 5.2 Valuation of Up-and Out Barrier Cap at Different VolatilityLevels…….....21
Table 5.3 Valuation of Up-and Out Barrier Cap at Different Volatility Levels……...22
Table 6.1 Price Sensitivities of Hedging Portfolios…………………………………27
Table 6.2 Price Sensitivities of Hedging Portfolios of Different Maturity Caps..…..28
Table 6.3 Price Sensitivities in Upward Term Structure………………..………..…30
Table 6.4 Price Sensitivities in Downward Term Structure……………..…………30
Table 6.5 Hedging Performance of 2-year Interest Rate Cap……………..………32
Table 6.6 Hedging Performance of 4-year Interest Rate Cap……………..………33
Table 6.7 Hedging Performance of 6-year Interest Rate Cap……………..………34
Figure Contents
Figure 6.1 The shape of upward term structure………………………………….29
Figure 6.2 The shape of downward term structure………………………………29
Figure 6.3 2-year Cap Hedge Results……………………………………………35
Figure 6.4 4-year Cap Hedge Results……………………………………………35
Figure 6.5 6-year Cap Hedge Results……………………………………………36
Figure 6.6 2-year Cap Hedge Results under upward term structure……………..36
Figure 6.7 4-year Cap Hedge Results under upward term structure……………..37
Figure 6.8 6-year Cap Hedge Results under upward term structure……………..37
Figure 6.9 2-year Cap Hedge Results under downward term structure………….38
Figure 6.10 4-year Cap Hedge Results under downward term structure………….38
Figure 6.11 6-year Cap Hedge Results under downward term structure………….39
參考文獻 Reference
Ahn, D.H., S. Figlewski, and B. Gao, 1999, Pricing discrete barrier options with an adaptive mesh, The Journal of Derivatives, Summer, Vol. 6, pp. 33-43
Brace, A., D. Gatarek, and M. Musiela, 1997, The market model of interest rate dynamics, Mathematical Finance, April, Vol. 7, No. 2, pp. 127-147
Brace, A., T. Dun, and G. Barton, 1998, Towards a central interest rate model, Tech. Rep., Conference Global Derivatives, 98
Brace, A., 1998, Simulation in the GHJM and LFM models, FMMA NOTES, 19 February
Driessen, J., P. Klaasen, and B. Melenberg, 2003, The performance of multi-factor term structure models for pricing and hedging caps and swaption, Journal of Financial & Quantitative Analysis, September, Vol. 38, Issue 3, pp. 635
Dun, T., S. Erik, and B. Geoff, 1999, Simulated swaption hedging in the lognormal forward LIBOR model, Working paper, June, University of Technology, Sydeny
Dun, T., S. Erik, and B. Geoff, 2000, Simulated swaption delta-hedging in the lognormal forward LIBOR model, 2001, International Journal of Theoretical and Applied Finance, Vol. 4, No. 4, pp. 677-709
Gupta, A. and M. G. Subrahmanyam, 2001, An examination of the static and dynamic performance of interest rate option pricing models in the dollar cap-floor markets, Working paper, September
Hull, J., and A. White, 1990, Pricing interest-rate-derivative securities, The Review of Financial studies, Vol. 3, No. 4 (1990), pp. 573-592
Hull, John C., 2003, Options, Futures, and Other Derivatives, 5th ed., (United States of America: Prentice-Hall, Inc.)
Kuan, G.C.H., and N. Webber, 2003, Pricing barrier options with one-factor interest rate models, The Journal of Derivatives, Summer, Vol. 10, pp. 33-50
Longstaff, F. A., 1990, The valuation of options on yield, Journal of Financial Economics, 26, pp. 97-121
Longstaff, F. A., 1995, Hedging interest rate risk with options on average interest rates, Journal of Fixed Income, March, pp. 37-45
Miltersen, K.R., K. Sandmann, and D. Sondermann, 1997, Closed form solutions for term structure derivatives with log-normal interest rates, The Journal of Finance 52, March, pp. 409-430
Pelsser, A., 2000, Efficient Methods for Valuing Interest Rate Derivatives (Springer)
指導教授 岳夢蘭(Meng-Lan Yueh) 審核日期 2004-7-2
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明