博碩士論文 943202055 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:31 、訪客IP:18.224.59.57
姓名 蔡耀逸(Yao-yi Tsai)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 桃園地區短期缺水供需策略之研究
(Strategy of Supply-Demand in Taoyuan Area During Short-Run Water Shortage.)
相關論文
★ 水資源供需指標建立之研究★ 救旱措施對水資源供需之影響分析
★ 台灣地區颱風雨降雨型態之分析研究★ 滯洪池系統最佳化之研究
★ 運用遺傳演算優化串聯水庫系統聯合運轉規線之研究★ 河川魚類棲地分佈之推估與分析研究-以卑南溪新武呂河段為例-
★ 整合型區域水庫與攔河堰聯合運轉系統模擬解析及優化之研究★ 河川低水流量分流演算推估魚類棲地之研究-以烏溪上游為例
★ 大漢溪中游生態基流量推估與棲地改善之研究★ 石門水庫水質模擬與水理探討
★ 越域引水水庫聯合操作規線與打折供水最佳化之應用-以寶山與寶山第二水庫為例★ 防洪疏散門最佳啟閉時間之研究 -以基隆河臺北市河段為例-
★ 配水管網破管與供水穩定性關係之研究★ 石門水庫永續指標之建立與研究
★ 台灣地區重要水庫集水區永續指標建立與評量★ 限制開發行為對水庫集水區水質保護之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來,桃園地區發生幾次較為嚴重之缺水事件,其主要原因乃颱風過後造成原水濁度過高,而影響淨水場處理能力。本研究為紓緩桃園地區之缺水狀況,將搜集桃園境內可用水源及淨水場操作規則,並利用VENSIM建構桃園地區自來水供需系統動力模式,以研擬出在缺水時期實際可行之應對方案及供水型態。
本研究針對有無預警、輪供機制及硬體設施進行ㄧ系列之模擬分析,結果顯示若自來水公司確實發布預警,則可使南桃園在海棠颱風期間之總缺水戶數減少40~50萬戶,而總缺水率降低11~15%,此外,本研究結果更進一步指出桃園地區淨水場容量已不足,為了防範短期缺水事件發生,以及迎合未來需求,擴建或增設淨水場是迫切需要的。
針對管線末端頻頻缺水之問題,本研究以加入大型淨水儲水池之硬體設備進行分析探討,結果顯示加入大型淨水儲水池可有效地改善末端缺水問題,使南桃園在海棠、馬莎及泰利期間之管線末端總缺水戶數各減少48、33及22萬戶。
本研究將輪供機制分為供一停ㄧ、供二停ㄧ及供三停ㄧ進行模擬與分析,結果顯示因輪供無法增加供水量,因此在改善缺水情況上僅有小幅之影響,其與輪流供水機制之時機較有相關,可透過本研究之模式進行預先模擬,使其在實際運用上更有效益。
摘要(英) In recent years, there were several events of serious water shortage in Taoyuan area. The main reason is the typhoon which made turbidity too high to be treated for municipal water supply, and then caused water treatment plants to be shut down. The purpose of this research is to develop a model for risk assessment in water supply system and to draw up several general strategies on water resource allocation. Firstly, the data of water resources of Taoyuan area and operation rule of water treatment plant were collected and analyzed. Then a system dynamic model, Vensim, was applied to simulate the supply and the demand system structure of tap-water in Taoyuan area. At last, feasible policy was drawn up and water supply pattern in time of short-term water shortage was addressed.
This research proceeded simulation and analysis which aims at with forewarning or without forewarning condition. The mechanism of supply and hardware of facility were investigated. The result shows if water company is able to announce forewarning, it can achieve total water shortage households to reduce by 400~500 thousand households and results in total deficit rate to reduce 11~15% in south area of Taoyuan during Haitang typhoon. In addition, the research further points out that the capacity of water treatment plants of Taoyuan area are not sufficient enough to prevent water shortage events to occur, as well as cater the future’’s demand. It should crave to extend the existing capacity or additionally build new water treatment plant.
As for dealing with water shortage problem of terminal area of pipeline, this research proceeds analysis and discussion on the possibility of construct large-scale tanks of pure water in site. The result shows that it can effectively reduces the shortage. Total water shortage households is reduced by 480, 330 and 220 thousand households in terminal area of pipeline of south area of Taoyuan during Haitang, Matsa and Talim typhoon, respectively.
Finally, this research studies three scenarios of supply patterns: one day of supply then one day of no supply, two day of supply then one day of no supply, and three day of supply then one day of no supply. The result shows that because conversion of the pattern of supply cannot increase the amount of water supply, so it only has slight influence to water shortage condition. However, it alters the timing of shortage. It is suggested that the manager can simulate in advance by using the proposed model to investigate the efficient operation.
關鍵字(中) ★ 多水資源管理
★ 系統動力模式
★ 短期缺水
關鍵字(英) ★ multiple water resources management
★ Short-term water shortage
★ system dynamic model
論文目次 摘要 Ⅰ
目錄 Ⅳ
圖目錄 Ⅵ
表目錄 Ⅸ
符號表 Ⅹ
第一章 緒論 1
1.1 研究動機 1
1.2 研究目的 2
1.3 本文架構 3
第二章 文獻回顧 5
2.1 水資源規劃模式 5
2.2 系統動力學 9
2.3 乾旱指標 11
第三章 研究方法 14
3.1 系統動力學理論介紹 14
3.2 研究區域 20
3.3 桃園地區自來水供需系統動力模式建立 36
3.3.1 模式限制 36
3.3.2 桃園地區自來水供應之系統動力模式 36
3.3.3 需水量系統動力模式 42
3.3.4 輪供系統動力模式 44
3.3.5 大型淨水儲水池系統動力模式 45
3.3.6 缺水率與缺水戶數之系統動力模式 46
3.3.7 模式驗證 48
第四章 結果分析與討論 51
4.1 九十四年缺水事件原始情況說明 51
4.2 政策之模擬分析 52
4.3 硬體設施之模擬分析 64
4.4 政策與硬體設施聯合操作之模擬分析 69
第五章 結論與建議 73
5.1結論 73
5.1建議 74
參考文獻 75
附錄A 系統動力模式主要元件程式碼 78
附錄B 系統動力模式 113
參考文獻 1. 王復生(2002),「屏東地區水田休耕水資源調配之評估」,國立屏東科技大學土木工程學系碩士班碩士學位論文。
2. 李炳均(2000),「臺中地區用水線性規劃之研究」,淡江大學水資源及環境工程學系碩士論文。
3. 李子倫(1999),「颱風時期水庫操作風險分析之研究-以石門水庫為例」,國立台灣大學農業工程學系研究所碩士論文。
4. 林進財(2000),「救旱措施對水資源供需之影響分析」,國立中央大學土木工程研究所碩士論文。
5. 林哲暐(2005),「桃園地區乾旱時期供水風險之研究」,國立中央大學土木工程研究所碩士論文。
6. 陳明業(2002),「淡水河水資源系統動力學模式與永續管理策略之研究」,國立台灣大學生物環境系統工程學系暨研究所碩士論文。
7. 陳世偉(2002),「遺傳演算法運用在石門與翡翠水庫並聯系統操作規線之研究」,國立中央大學土木工程研究所碩士論文。
8. 陳莉、楊人傑、陳俊龍、蔡宗志(1998),「以遺傳演算法優選翡翠水庫運用規線之研究」,第九屆水利工程研討會論文集,第D93-D102頁。
9. 張炎銘(1992),「再論乾旱警報系統建立」,台灣水利,第40卷,第3期,pp.56-65。
10. 張婉茹(2006),「應用系統動力學於多元化水資源策略模擬與分析-以台中地區為例」,國立交通大學土木工程研究所碩士論文。
11. 張懷燕(2002),「遺傳演算法於水庫規線操作之模擬優選與即時操作之應用」,國立中興大學土木工程學系碩士論文。
12. 許榮哲(1998),「灰色模糊動態規劃於水庫即時操作之應用」國立台灣大學農業工程學系研究所碩士論文。
13. 許睿祥(2006),「水田埤塘之系統動力模式」,國立中央大學土木工程研究所碩士論文。
14. 郭振泰、張武訓(1984),「應用序率動態規劃於石門水庫運轉之研究」,第二屆水利工程研討會論文集,第128-141 頁。
15. 黃珮貞(1998),「模擬法在水庫操作上之應用」,國立海洋大學河海工程學系碩士論文。
16. 黃鈺珊(2001),「高屏溪流域水資源永續發展政策規劃之系統動力學研究」,國立中山大學公共事務管理研究所第八屆碩士論文。
17. 馮保清、雷志棟、江海波、孫福保、楊詩秀(2004),「線性規劃在灌區用水管理中的應用」,水科學進展,第15卷,第5期,1001-6791(2004)05-0660-05。
18. 萬象(1985),「串聯水庫系統最佳操作模式之研究」,國立台灣大學農業工程研究所碩士論文。
19. 詹麗梅(2001),「區域供水系統動力模型建立與策略評估-以大基隆供水區為例」,國立海洋大學河海工程學系。
20. 廖恒凱(2005),「多水庫聯合營運最佳化之研究」,國立中央大學土木工程研究所碩士論文。
21. 劉弘雁(1997),「高雄都會區水資源之系統動力學研究」,國立中山大學公共事務管理研究所碩士論文。
22. 鄧喬明(2000),「住宅合理用水量之研究」,中原大學土木工程學系碩士論文。
23. 鄭裕寬(2001),「運用遺傳演算優化串聯水庫系統聯合運轉規線之研究」,國立中央大學土木工程研究所碩士論文。
24. 蔡明澤(2002),「越域引水水庫聯合操作規線與打折供水最佳化之應用-以寶山與寶山第二水庫為例」,國立中央大學土木工程研究所碩士論文。
25. 關業超、孫希華、李平(2005),「水資源對區域社會經濟發展的支撐能力研究-以濟南市長清區為例」,中國人口資源與環境,2005年,第15卷,第1期。
26. 簡駿欽(1997),「水資源永續發展模式之系統理論研究」,淡江大學水資源及環境工程學系碩士論文。
27. Becker, L. and Yeh, W.W.G., “Engineering Systems Department, Unerversity of California, Los Angeles, California”, Water Resources Research, VOL.10, NO.6:90024 (1974).
28. Bellman, R.E., Dynamic Programming, Princeton University Press, Princeton, N. J. (1957).
29. Cohon, J.L. and Marks, D.H., “A Review and Evaluation of Multiobjective Programming Techniques” Water Resources Research, Vol.11, No.2:pp.208-220, (1975).
30. Dorfman, R., “Mathematic Models: The Multi-Structure Approach, in Design of Water Resources Systems”, edited by A. Maass, Harvard University Press, Cambridge, Mass. (1962).
31. Holland, J.H., Adaptation in Nature and Artificial Systems, MIT Press, Cambridge, Massachusetts, (1975).
32. Loucks, D.P., “Computer Models for Reservoir Regulation”, J.Sanit.Eng. Div.Am. Soc.Civ.Eng., 94(SA4):pp.657-669, (1968).
33. McKee, T.B., Doesken, N.J. and Kleist, J., “The Relationship of Drought Frequency and Duration to Time Scales”, Preprints, Eighth Conference on Applied Climatology, 17-22 January, Anaheim California, (1993).
34. Oliveira, R. and Loucks, D.P., “Operating Rules for Multireservoir Systems”, Water Resource Research, Vol.33, No.4, pp839-852, (1997).
35. Palmer, W.C., “Keeping Track of Crop Moisture Conditions, Nationwide the New Crop Moisture Index”, Weatherwise, 21: pp. 156-161, (1968).
36. Ranndall, D., Cleland, L., Kuehne, C.S., Link, G.W. and Sheer, D.P., “ Water Supply Planning Simulation Model Using Mixed-Integer Linear Program Engine”, Journal of Water Resources Planning and 102 Management, Vol.123, No.2, pp116-124 (1997 ).
37. Sehlke, G. and Jake, J., “System Dynamics Modeling of Transboundary Systems: The Bear River Basin Model” Vol. 43, No. 5-GROUND WATER-September-October:pages 722-730 (2005).
38. Shafer, B.A. and Dezman, L.E., “Development of a Surface Water Supply Index (SWSI) to Assess the Severity of Drought Conditions in Snowpack Runoff Areas. ”, Proceedings of the Western Snow Conference, pp. 164-175, (1982).
39. Simonovic, S.P., and Marino, M.A., “Reliability Programming in Reservoir Management, (1)single multipurpose reservoir”, Water Resources Research, Vol.16, No.5, pp.844-848, 1980.
40. Stave, K.A., “A System Dynamics Model to Facilitate Public Understanding of Water Management Options in Las Vegas, Nevada”, Journal of Environmental Management, 67:303-313, (2003).
41. Young, G.K., “Finding Reservoir Operation Rules”, Journal of The Hydraulics Division, ASCE, pp297-320 (1967).
指導教授 吳瑞賢(Ray-shyan Wu) 審核日期 2007-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明