博碩士論文 93428032 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:27 、訪客IP:3.17.78.184
姓名 余雅婷(Ya-Ting Yu)  查詢紙本館藏   畢業系所 財務金融學系
論文名稱 GARCH-jump模型預測波動性之準確度
(Accuracy of forecasting volatility bythe GARCH-jump mixture mode)
相關論文
★ 最適指數複製法之自動化建置:以ETF50為例★ 台灣公債市場與台幣利率交換交易市場動態關聯性之研究
★ 企業貸款債權證券化--信用增強探討★ 停損點反向操作指標在台灣期貨市場實證
★ 投資型保單評價-富邦金吉利保本投資連結型遞延年金保險乙型(VANB5)★ 停損點反向操作指標在台灣債券市場實證
★ 匯率風險值衡量之實證研究-以新台幣、日圓、英鎊、歐元匯率為例★ 探討央行升息國內十年期指標公債未同步上升之原因
★ 信用風險模型評估—Merton模型之應用★ 資產管理公司購買不動產擔保不良債權評價之研究
★ 股票除息對期貨與現貨報酬之影響★ 主權基金的角色定位與未來影響力之研究
★ 我國公債期貨之研究分析★ 用事件研究法探討希臘主權債信危機-以美國及德國公債為例
★ 企業避險及財務操作之實例探討★ 台灣期貨市場之量價交易策略
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 此篇論文,使用史坦普指數(S&P 500 index)比較Maheu and Mccurdy (2004)所提出的GARCH-Jump模型及GJR-GARCH-normal模型報酬波動性的預測能力。 並使用三種不同的準確度衡量指標 , MSE, 及P 來檢視此兩模型未來1、5、10、15天預測波動性的準確度。 以五分鐘日內價格估計RV及BV作為預測波動性標的(volatility target)。 此外理論上,RV與BV提供了事後跳躍波動性的估計值。 為檢視跳躍波動性是否影響下期的報酬波動性,我們加入上ㄧ期的跳躍波動性估計值到GJR-GARCH模型,評估加入跳躍波動性估計值是否提高報酬波動性預測的準確度。並比較兩種波動性標的結果是否不同。
結果發現,GARCH-Jump模型及加入上ㄧ期的跳躍波動性估計值的GJR-GARCH模型並沒有提高預測波動性的準確度,且兩種波動性標的結果皆相同。此說明加入Jump變數可能干擾模型預測指數報酬波動性的準確度。
摘要(英) In the thesis, the S&P 500 index is used to compare the accuracy of forecasting volatility by the GARCH-Jump model developed by Maheu and Mccurdy (2004) relative to the benchmark GJR-GARCH model with normal distribution. We use the criteria of , MSE, and P to evaluate the accuracy of forecasting volatility one period into the future, as well as 5-, 10-, and 15-period forecasts. Two volatility targets are calculated by the 5-min prices, realized volatility and bipower volatility. They allow us to obtain theoretical ex post jump measures. Then, we test whether models added the last previous jump measures improve the accuracy of forecasting volatility, which implies that jumps occurred past the period make an effect on future volatility. Finally, we compare results with different volatility targets.
We find that the GARCH-Jump model and the models added the last previous jump measures do not provide superior volatility forecasts. The results of two volatility targets are the same. This implies that adding jump component would noise the accuracy of forecasting index volatility.
關鍵字(中) ★ 波動性預測
★ Jump
★ GARCH模型
關鍵字(英) ★ Jump
★ GARCH model
★ Volatility forecast
論文目次 1. Introduction 1
2. Data 3
2.1 Daily index prices 3
2.2 Five-min index prices 4
3. Methodology 4
3.1 Volatility targets 4
3.1.1 Realized Volatility 4
3.1.2 Bipower Volatility 6
3.1.3 Jump measures 6
3.2 Accuracy evaluations 7
3.2.1 Divergence distant measures 7
3.2.2 Correlation measures 8
3.3 Models 10
3.3.1 The GJR-GARCH (1, 1) model 10
3.3.2 The GARCH-Jump model 11
3.3.3 The models added the ex post variations 16
3.4 Forecasting method 17
4. Empirical results 18
4.1 Comparing the GJR-GARCH (1, 1) model and the GARCH-Jump model 18
4.2 Comparing the GJR-GARCH (1, 1) model and the GJR-GARCH (1, 1) model added the ex post variation 19
4.2.1 Conparing with model added the ex post bipower volatility 20
4.2.2 Conparing with model added the ex post jump measure 20
4.2.3 Comparing model added the ex post jump measure and model added both ex post bipower volatility and jump measure 20
4.3 Comparing the two volatility targets 21
4.4 Discussion 22
5. Conclusions 24
References 26
參考文獻 [1] Andersen, T. G.. and Bollerslev, T. (1998), “ Answering the Skeptics: Yes, Standard Volatility Models do Provide Accurate Forecasts,” International Economic Review, 399,885-905.
[2] Andersen, T. G.. and Bollerslev, T. Diebold, F. X., and Labys, P(2001), “ The Distribution of Realized Exchange Rate Volatility,” Journal of the American Statistical Association, 96,42-55.
[3] Barndorff-Nielsen, O. E. and Shephard, N. (2002) , “Estimating Quadratic Variation Using Realized Variance,” Journal of Applied Econometrics, 17, 457-477.
[4] Barndorff-Nielsen, O. E. and Shephard, N. (2004) , “Power and Bipower Variation with Stochastic Volatility and Jumps,” Journal of Financial Econometrics, 2, 1-13.
[5] Blair, B. J., Poon, S. and Taylor S. J. (2001), “Forecasting S&P 100 volatility: the incremental information content of implied volatilities and high-frequency index returns,” Journal of Econometrics, 105, 5-26.
[6] Bollerslev, T., Kretschmer, U. Pigorsch, C. and Tauchen, G. (2005) “A Discrete-Time Model for Daily S&P500 Return and Realized Variations: Jumps and Leverage Effects” forthcoming.
[7] Brailsfordm, T. J. and Robert W. F. (1996), “An Evaluation of Volatility Forecasting Techniques,” Journal of Banking Finance, 20:3, 419-438.
[8] Chan, W. H., and Maheu, J. M. (2002), “Conditional jump dynamics in stock market returns,” Journal of Business & Economic Statistics, 20, 377-389.
[9] Conte, F. and Renault, E. (1998), “Long-Memory in Continuous-Time Stochastic Volatility Models” Mathmatical Finance, 8, 291-323.
[10] French, K.R., Schwert, G. W., and Stambaugh, R. F. (1987), “Expected Stock Returns and Volatility,” Journal of Financial Economics, 19, 3-29.
[11] Glosten, L. R., Jagannathan, R. and Runkle, D. E. (1993), “On the Relation Between the Expected Value and the Volatility of the Nominal Excess return on Stocks,” Journal of Finance, 48, 1779-1801.
[12] Hsieh, D. A.(1991), “Chaos and Nonlinear Dynamics: Application to Financial Markets,” Journal of Finance, 46, 1839-1877.
[13] Huang, X. and Tauchen, G.. (2005), “The relative Contribution of Jumps to Total Price Variance,” Journal of Financial Economics, forthcoming.
[14] Maheu, J. M. and Mccurdy T. H. (2004), “News Arrival, Jump Dynamics, and Volatility Components for Individual Stock Returns,” Journal of Finance, 59, 755-793.
[15] Merton, R. C. (1980), “On Estimating the Expected Return on the Market: An Exploratory Investigation,” Journal of Financial Economics, 8, 323-361.
[16] Poterba, J. M. and Summers, L. H. (1986), “The Persistence of Volatility and Stock Market Fluctuations,” The American Economic Review, 76, 1142-1151.
[17] Taylor, S. J. and Xu, X. (1997), “The Incremental Volatility Information in One Million Foreign Exchange Quotations,” Journal of Empirical Finance, 4, 317-340.
指導教授 王耀輝、張傳章
(Yaw-Huei Wang、Chuang-Chang Chang)
審核日期 2006-7-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明