博碩士論文 944208006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:3.14.251.103
姓名 陳玉婷(Yu-ting Chen)  查詢紙本館藏   畢業系所 財務金融學系
論文名稱 抵押債權受益憑證評等方法之探討-高溢酬投組與低溢酬投組之比較
(An Investigation of Collateralized Debt Obligation Rating Methodologies- High Premium Portfolio vs. Low Premium Portfolio)
相關論文
★ 台灣證券公司境外金融商品交易之風險管理-M公司個案分析★ Merton模型違約預警之研究--台灣上市電子違約公司實證分析
★ 最適指數複製法之自動化建置:以ETF50為例★ 台灣不動產資產信託—以發行個案為例
★ 台灣公債市場與台幣利率交換交易市場動態關聯性之研究★ 企業貸款債權證券化--信用增強探討
★ 停損點反向操作指標在台灣期貨市場實證★ 投資型保單評價-富邦金吉利保本投資連結型遞延年金保險乙型(VANB5)
★ 停損點反向操作指標在台灣債券市場實證★ 匯率風險值衡量之實證研究-以新台幣、日圓、英鎊、歐元匯率為例
★ 探討央行升息國內十年期指標公債未同步上升之原因★ 信用風險模型評估—Merton模型之應用
★ 資產管理公司購買不動產擔保不良債權評價之研究★ 股票除息對期貨與現貨報酬之影響
★ 主權基金的角色定位與未來影響力之研究★ 我國公債期貨之研究分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 抵押債權受益憑證是由許多債務憑證組成的信用風險商品,近年來,其發展已經成為全球固定收益證券市場重要的一部分。在本論文中,我們先概述抵押債權受益憑證發展狀況,接著介紹三大信評公司-穆迪、標準普爾、惠譽- 如何對押債權受益憑證分券進行評等,這三家信評公司各自發展出自己的評等模型,這些模型當中有相似也有相異之處。
然後,利用50檔信用違約交換組成合成型抵押債權受益憑證,標的資產分成高溢酬與低溢酬的投資組合,分別放入標準普爾與惠譽的評等模型做比較,最後簡述評等套利。
摘要(英) Collateralized debt obligations, CDOs, are credit risk products backed by a pool of debt obligations. Over recent years, CDOs have become an important part of the global fixed income market. In this paper, we first describe the overview of CDOs. Then we introduce how rating agencies - Moody’s, S&P and Fitch - determine the rating of a CDO tranche. Each of them has their own methodologies, some are similar and some are different.
Next, we construct two synthetic CDOs with one is high premium portfolio and the other is low premium portfolio. Put the required information into S&P’s and Fitch’s rating software and compare these results. Finally, we use these result to make some short discussions about rating arbitrage.
關鍵字(中) ★ 抵押債權受益憑證
★ 信評機構
★ 評等套利
★ 評等模型
關鍵字(英) ★ Rating Arbitrage
★ Rating Model
★ Collateralized debt obligations
★ Rating Agency
論文目次 1. Introduction 1
2. Overview of CDOs 3
3. Rating Agency’s CDO Rating Methodologies 6
3.1 Rating Measure: Expected Loss vs. Probability of Default Approaches to Rating CDO 7
3.2 Modeling Approach 8
3.2.1 Moody’s Binomial Expansion Technique 8
3.2.2 S&P’s CDO Evaluator Model 17
3.2.3 Fitch’s Default VECTOR Model 23
4. A Case Study of Simulation 30
4.1 Data Description 31
4.2 Portfolio Formation 31
4.3 Simulation Result 33
4.3.1 Simulation PartⅠ: 2005/3/21 and 2007/3/21 34
4.3.2 Simulation PartⅡ: 2003/3/21, 2005/3/21 and 2007/3/21 43
4.4 Rating Arbitrage 46
5. Conclusion 48
Reference 50
Appendix A: Summary of Reference Entities 53
參考文獻 [1]Bluhm, C. (2003), “CDO Modeling: Techniques, Examples and Applications”,
Working Paper.
[2]Cifuentes, A., and G. O’Connor (1996), “The binomial expansion method applied to CBO/CLO analysis”, Moody’s Special Report.
[3]Cifuentes, A., and C. Wilcox (1998), “The double binomial method and its application to a special case of CBO structures”, Moody’s Special Report.
[4]Dan diBartolomeo (1998), “A Review of Moody’s Methods Used to Assign Credit
Ratings to Collateralized Loan Obligations”, Northfield Information Services.
[5]Douglas J. Lucas, Laurie S. Goodman, Frank J. Fabozzi, Collateralized debt obligations: structures and analysis, 2nd ed. , Hoboken, N.J. :J. Wiley & Sons, 2006.
[6]Domenico Picone, “Collateralized Debt Obligations”, City University Business School, London Royal Bank of Scotland.
[7]Duffie, D., and N. Garleanu (2001), “Risk and Valuation of Collateralized Debt Obligations,” Financial Analysts Journal, vol. 57, No. 1, pp. 41–59.
[8]Fender, Ian, and John Kiff (2004), “CDO Rating Methodology: Some Thoughts on Model Risk and Its Implications,” BIS Working Papers, No. 163.
[9]Frank.J. Fabozzi, Laurie S.Goodman (Eds.), Investing in Collateralized debt obligation, 2001.
[10]Frank Partnoy (2006),“How and Why Credit Rating Agencies are Not Like Other Gatekeepers?”, San Diego Legal Studies Paper, No. 07-46.
[11]Gill K.,R. Gambel, R.V. Hrvatin, H. Katz, G. Ong and D. Carroll (2004),”Global rating criteria for collateralized debt obligations”, structured finance, Fitchratings .
[12]J. Garcia, T. Dwyspelaere, L. Leonard, T. Alderweireld and T. Van Gestel (2005), “Comparing BET and Copulas for Cash Flows CDO’s”, working paper
[13]K. Gilkes, N. Jobst (2005), “CDO Evaluator Version 3.0: Technical Document”, S&P Structured Finance
[14]Lucas, Douglas (2001),”CDO handbook”, Global structured finance research, JP Morgan.
[15]Paul, M., C., Yomtov (2000), “The Lognormal Method Applied to ABS Analysis”, Moody's Investors Service
[16]Peretyatkin, Vlad, and William Perraudin (2002), “EL and DP Approaches to Rating CDOs and the Scope for ‘Ratings Shopping’,” in Credit Ratings—Methodologies, Rationale and Default Risk, ed. by M.K. Ong (London: Risk Books).
[17]Satjayit Das, Credit derivatives: CDOs and structured credit products, 3rd ed., Singapore; Hoboken, NJ: John Wiley & Sons (Asia), 2005.
[18]Standard & Poor’s (2002): “Global Cash Flow and Synthetic CDO Criteria“,
S&P Structured Finance.
[19]Sten Bergan (2002),“CDO Evaluator and Portfolio Benchmarks ”, The securitization Conduit, Vol.5, No.1-4.
[20]The Fitch Default VECTOR Model- User Manual, Fitch Ratings Report, June 2006.
[21]The CDO Evaluator Handbook, S&P Structured Finance, February 2006.
[22]Zhu W., D. Yan, D. Castro, and S. McGarvey (2003), “CDO Rating Methodologies Review”, Fixed Income Strategy, Merrill Lynch
[23]Witt (2004), “Moody’s Correlated Binomial Default Distribution”, Moody's Investors Service.
[24]林淑瑛 (2004), 信用衍生性金融商品之研究CB Asset Swap及CDO, 國立中央大學財務金融所博士論文
指導教授 史綱、張傳章
(Gang Shyy、Chuang-Chang Chang)
審核日期 2007-7-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明