博碩士論文 953202022 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:31 、訪客IP:18.223.213.114
姓名 呂韋成(Wei-cheng Lu)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 不同樁排列方式之自承式鋼軌樁擋土系統之離心模擬
(BEHAVIOR OF CANTILEVER SOLDIER-PILED WALLS WITH DIFFERENT PILE ARRANGEMENTS)
相關論文
★ 砂土層中隧道開挖引致之地盤沉陷與破壞機制及對既存基樁之影響★ 以離心模型試驗探討逆斷層作用下單樁與土壤互制反應
★ 攝影測量在離心模擬試驗之應用-以離心隧道模型之地表沉陷量量測為例★ 沉箱式碼頭受震反應的數值分析
★ 軟土隧道襯砌應力與地盤變位之數值分析★ 沉箱碼頭受震反應及側向位移分析
★ 潛盾隧道開挖面穩定與周圍土壓力之離心模擬★ 地理資訊系統應用於員林地區液化災損及復舊調查之研究
★ 黏性土層中隧道開挖引致之地盤沉陷及破壞機制★ 砂土層中通隧引致之地盤變位及其對既存基樁的影響
★ 既存隧道周圍土壓力受鄰近新挖隧道的影響★ 以攝影測量觀察離心土壩模型受滲流力作用之變位
★ 通隧引致鄰近基樁之荷重傳遞行為★ 潛盾施工引致之地盤沉陷案例分析
★ 以離心模型試驗探討高含水量黏性背填土 加勁擋土牆之穩定性★ 懸臂式擋土壁開挖之離心模型試驗
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 自承式鋼軌樁開挖工法,適用於良好地質條件下的大面積地下室
開挖工程,具有成本低廉及易於堅硬土層施工與施工快速等優點。使
用自承式雙排鋼軌樁開挖工法的主要目的,在於提高鋼軌樁擋土系統
的勁度,減少水平支撐設施的使用,提高人員施作效率、縮短施工工
期與增加開挖深度。
本研究利用離心模型試驗,藉由模擬開挖過程,探討於砂土層中
以自承式鋼軌樁擋土系統作為擋土設施時,改變雙排鋼軌樁排間距與
樁長或利用三排鋼軌樁等不同的樁排列方式,對自承式鋼軌樁擋土系
統穩定性的影響。另外亦探討在不同的開挖與貫入深度比下,不同樁
排列方式之擋土系統對鄰近地盤之影響程度。
研究結果顯示,砂土層中以自承式雙排鋼軌樁擋土系統作為擋土
設施時增大排間距或以三排樁作為擋土設施時,能有效的降低因開挖
所引致的地表沉陷、牆體變位與樁身的受力,有助於擋土系統之穩
定;而增長雙排鋼軌樁擋土系統之樁長有助於開挖深度的增加。因開
挖所引致之地表沉陷槽皆屬於三角槽型,且影響範圍皆為鋼軌樁擋土
壁壁後1.2 倍樁長。從試驗結果得知,將雙排與三排鋼軌樁擋土系統
視為一等值單排鋼軌樁擋土系統來進行穩定分析,為一可行之方法。
摘要(英) Self-supported soldier pile wall system is eminent for its superiority
on low cost and easy construction when being applied in the vertical
excavations. Its advantages are reducing the deflection of the retaining
wall, shortening the working hour and increasing the depth of excavation.
In this research, a series of centrifuge modeling tests were conducted
to simulate the process of excavation with self-supported soldier pile wall
retaining system. The simulations of various excavation depths with
different spacing between the front and rear row piles in double-row-pile
or the triple-row-pile wall system were being carried out to study the
effects upon adjacent area.
The test results show that the self-supported double soldier pile wall
system can effectively reduce the surface settlement, horizontal
displacement, tilt angle and maximum bending moment. In the
double-pile-row retaining wall system, with the increase of the distance
between the front and rear row makes the retaining wall become more
stable. Increasing the quantity of rows of retaining wall system can
reduce the deformation and improve the stability of the double-pile-row
retaining wall system. Increasing the length of piles of retaining wall
system can reduce the deformation and improve the stability of the
retaining wall system, and can also effectively increase the depth of
excavation. When a self-supported soldier wall was selected to be the
retaining system in sandy layer, the shape of the ground settlement
induced by the excavation in this study was a triangular one. The affected
area was 1.2 times the pile length behind the wall. According to this
research, the multi-pile-row retaining wall system can be treated as a
equivalent single row system, and a simplified stability analyzing method
is fully adopted.
關鍵字(中) ★ 開挖
★ 鋼軌樁
★ 雙排樁
★ 自承式鋼軌樁
關鍵字(英) ★ Excavation
★ Double-rail pile wall
★ Self-supported soldier pile
★ Soldier pile
論文目次 中 文 摘 要.............................................................................Ⅰ
英 文 摘 要.............................................................................Ⅱ
目 錄.........................................................................................Ⅲ
表 目 錄...................................................................................Ⅴ
圖 目 錄...................................................................................Ⅵ
照 片 目 錄.............................................................................Ⅹ
符 號 說 明.............................................................................XI
第一章 序論.............................................................................1
1-1 序…...........................................................................................1
1-2 研究動機及目的.......................................................................2
1-3 研究架構...................................................................................2
1-4 論文內容...................................................................................3
第二章 文獻回顧.....................................................................4
2-1 懸臂式擋土牆分析理論...........................................................4
2-2 現場觀測分析………...............................................................9
2-3 數值分析方法.........................................................................12
2-4 物理模型試驗.........................................................................14
2-4-1 1g 下之物理模型試驗..............................................................14
2-4-2 離心模型試驗...........................................................................15
2-5 離心模型原理.........................................................................21
2-5-1 離心模型之基本相似律...........................................................22
2-5-2 離心模型試驗之模型模擬.......................................................25
第三章 試驗土樣、儀器設備及試驗方法............................52
3-1 試驗土樣.................................................................................52
3-2 試驗儀器及相關設備.............................................................52
3-2-1 地工離心機...............................................................................52
3-2-2 模型試驗箱...............................................................................53
3-2-3 移動式霣降機...........................................................................54
3-2-4 模型鋼軌樁檔土系統...............................................................56
3-2-5 開挖模擬系統...........................................................................57
3-2-6 相關量測儀器...........................................................................57
3-3 砂試體準備與試驗步驟.........................................................58
3-3-1 試體準備...................................................................................58
3-3-2 離心模型試驗...........................................................................59
第四章 試驗結果與分析.......................................................82
4-1 試驗種類與回歸分析.............................................................82
4-1-1 試驗種類…………..............................................................83
4-1-2 回歸分析…………..............................................................84
4-2 鋼軌樁樁身彎矩分佈.............................................................86
4-2-1 雙排鋼軌樁之彎矩分佈............................................................86
4-2-2 三排鋼軌樁之彎矩分佈............................................................88
4-2-3 雙排鋼軌樁與三排鋼軌樁之彎矩分佈比較............................90
4-3 鋼軌樁樁頂水平變位與地表沉陷.........................................92
4-3-1 鋼軌樁樁頂水平變位...............................................................92
4-3-2 地表沉陷型態...........................................................................95
4-3-3 地表沉陷槽分佈範圍...............................................................97
4-4 鋼軌樁樁頂旋轉角與樁體變形分析...................................99
4-4-1 鋼軌樁樁頂旋轉角.................................................................99
4-4-2 鋼軌樁樁體變形分析.............................................................101
4-5 鋼軌樁樁體剪力與地盤反力分析.......................................104
4-5-1 樁身所承受之剪力.................................................................104
4-5-2 地盤反力分析.........................................................................105
4-6 自承式鋼軌樁擋土系統穩定分析.......................................107
4-6-1 單排鋼軌樁擋土系統.............................................................107
4-6-2 雙排鋼軌樁擋土系統.............................................................110
4-6-3 簡化穩定分析……….............................................................112
第五章 結論與建議.............................................................170
5-1 結論.......................................................................................169
5-2 建議.......................................................................................170
參考文獻.................................................................................172
參考文獻 [1] 李崇正,林志棟,林俊雄,「大地工程研究者知新工具:離心模
型試驗」,岩盤工程研討會論文集,中壢,第649-669 頁(1994)。
[2] 陳思宏,「黏土層中未襯砌隧道之破壞機制」,碩士論文,國立中
央大學土木工程學系,中壢(1996)。
[3] 莊孟翰,「未襯砌隧道壁變形引致地盤下陷分布形態分析」,碩士
論文,國立中央大學土木工程學系,中壢(1996)。
[4] 陳志豪,「懸臂式擋土牆開挖之離心模型試驗」,碩士論文,國立
中央大學土木工程學系,中壢(2003)。
[5] 江國輝,「通隧引致鄰近基樁之荷重傳遞行為」,碩士論文,國立
中央大學土木工程學系,中壢(2003)。
[6] 林婷媚,「雙排樁無支撐擋土結構壁體變形行為之研究」,碩士論
文,國立雲林科技大學營建工程學系,雲林(2003)。
[7] 林貽謙,「自承式鋼軌樁擋土系統之離心模擬」,碩士論文,國立
中央大學土木工程學系,中壢(2006)。
[8] 黃文璽,「自承式雙排鋼軌樁擋土系統穩定性之研究」,碩士論
文,國立中央大學土木工程學系,中壢(2006)。
[9] 歐章煜、謝百鉤,「以經驗公式預測台北盆地深開挖引致之地表
沉陷」,地工技術雜誌,第五十三期,第5-14 頁(1996)。
[10] 歐章煜、謝百鉤、唐雨耕,「深開挖穩定分析與變形分析」,地工
技術雜誌,第七十六期,第25-38 頁(1999)。
[11] 陳厚銘,「自承式雙排鋼版樁工法擋土開挖行為探討」,地工技術
雜誌,第七十五期,第41-48 頁(1999)。
[12] 王建智、林宏達、吳明峰,「黏土層深開挖引致之地表沉陷」,地
工技術雜誌,第七十六期,第51-62 頁(1999)。
[13] 謝百鉤,「黏土層深開挖引致地盤最大位移預測」,中國土木水利
工程學刊,第十三卷,第三期,第489-498 頁(2001)。
[14] 謝旭昇、石強、林婷媚,「淺論雙排樁無支撐工法」,地工技術雜
誌,第九十七期,第5-14 頁(2003)。
[15] 魏雨辰、林貽謙、黃文璽、江國輝、李崇正,「砂土層自承式雙
排鋼軌樁開挖時之反應」,第十二屆大地工程學術討論會,溪頭,
第B1-03-01-B1-03-09 頁(2007)。
[16] 歐章煜,深開挖工程分析設計與實務,科技圖書,台北(2002)。
[17] Acutronic, Geotechnical Centrifuge Model 665-1 Product
Description 5933H, France (1993).
[18] Bolton, M. D., and Powrie, W., “The collapse of diaphragm walls
retaining clay,” Geotechnique, Vol. 37, No. 3, pp. 335-353 (1987).
[19] Briaud, J. L., Nicholson, P., and Lee, J., “Behavior of full-scale
VERT wall in sand,” Journal of Geotechnical and Geoenvironmental
Engineering, ASCE, Vol. 126, No. 9, pp. 808-818 (2000).
[20] Clough, G.W., and O’Rourke T. D., “Construction induced movement
of insitu walls,” Proceedings Design and performance of earth
retainingst structures, ASCE, pp. 439-470 (1990).
[21] Christian M., “Analysis of wall ground movements due to deep
excavations in soft soil braced on a new worldwide database,” Soil
and Foundations, Vol. 44, No. 1, pp. 87-98 (2004).
[22] Frydman, S., and Baker, R., “Modelling the soil nailing-Excavation
process,” centrifuge 94, Rotterdam, pp. 669-674 (1994).
[23] Goldberg, D. T., Jaworski, W. E., and Gordan, M. D., “Lateral
support system and underpinning,” Report FHWA-RD, pp. 75-128
(1976).
[24] Georgiadis, M., Anagnostopoulos, C., and Saflekou, S., “Centrifuge
testing of laterally loaded piles in sand,” Canadian Geotechnical
Journal, Vol. 29, pp. 208-216 (1992).
[25] Georgiadis, M., and Anagnostopoulos, C., “Displacement of
structures adjacent to cantilever sheet pile walls,” Soil and
Foundations, Vol. 39, No. 2, pp. 99-104 (1999).
[26] Hashash, Y. M. A., and Whittle, J. A., “Ground movement prediction
for deep excavations in soft clay,” Journal of Geotechnical
Engineering, ASCE, Vol. 122, No. 6, pp. 474-486 (1996).
[27] Ilyas, T., Leung, C. F., and Budi, S. S., “Centrifuge model study of
laterally loaded pile groups in clay,” Journal of Geotechnical and
Geoenvironmental Engineering, ASCE, Vol. 130, No. 3, pp. 274-283
(2004).
[28] Kimura, T., Takemura, J., Hiro-oka, A., Okamura, M., and Park, J.,
“Excavation in soft clay using an in-flight excavator,” Centrifuge 94,
Rotterdam, pp. 649-654 (1994).
[29] King, G. j. w., “Analysis of cantilever sheet-pile walls in cohesionless
soil,” Journal of Geotechnical Engineering, ASCE, Vol. 121, No. 9,
pp. 629-635 (1995).
[30] Khan, M. R. A., Takemura, J., Fukushima, H., and Kusakabe, O.,
“Behavior of double sheet pile wall cofferdam on sand observed in
centrifuge tests,” International Journal of Physical Modelling in
Geotechnics, IJPMG, Vol. 1, No. 4, pp. 1-16 (2001).
[31] Leung, C. F., Chow, Y. K., and Shen, R. F., “Behavior of pile subject
to excavation-induced soil movement,” Journal of Geotechnical and
Geoenvironmental Engineering, ASCE, Vol. 126, No. 11, pp.
947-954 (2000).
[32] Liu, J., “Centrifugal modeling of multi-braced and unbraced
excavation failures,” Physical Modelling in Geotechnics, Canadian,
pp. 841-845 (2002).
[33] Leung, C. F., Lim, J. K., Shen, R. F., and Chow, Y. K., “Behavior of
pile groups subject to excavation-induced soil movement,” Journal
of Geotechnical and Geoenvironmental Engineering, ASCE,
Vol. 129, No. 1, pp. 58-65 (2003).
[34] McNamara, A. M., and Taylor, R. N., “Use of heave reducing piles to
control ground movements around excavations,” Physical Modelling
in Geotechnics, Canadian, pp. 847-852 (2002).
[35] Mokwa, R. L., and Duncan, J. M., “Rotational restraint of pile caps
during lateral loading,” Journal of Geotechnical and
Geoenvironmental Engineering, ASCE, Vol. 129, No. 9,
pp. 829-837 (2003).
[36] Madabhushi, S. P., and Chandrasekaran, V. S., “Rotation of cantilever
sheet pile walls,” Journal of Geotechnical and Geoenvironmental
Engineering, ASCE, Vol. 131, No. 2, pp. 202-212 (2005).
[37] Nahas, A. EL., and Takemura, J., “External stability of vertical
excavations in soft clay with self-supported DMM walls,” Soil and
Foundations, Vol. 42, No. 1, pp. 53-69 (2002).
[38] Nip, D. C. N., and Ng, C. W. W., “Back-analysis of laterally loaded
bored piles,” Geotechnical Engineering, ICE, Vol. 158, pp. 63-73
(2005).
[39] Ou, C. Y., and Lai, C. H., “Finite-element analysis of deep excavation
in layered sandy and clayey soil deposits,” Canadian Geotechnical
Journal, Vol. 31, pp. 204-214 (1994).
[40] Peck, R. B., “Deep Excavation and tunneling in soft ground," Proc.
7th Int. Conf. On Soil Mech. Found. Eng., State of Art Volume,
pp. 225-290 (1969).
[41] Powrie, W., “Limit equilibrium analysis of embedded retaining
walls,” Geotechnique, Vol. 46, No. 4, pp. 709-723 (1996).
[42] Poh, T. Y., Goh, A. T. C., and Wong, I. H., “Ground movements
associated with wall construction : case histories,” Journal of
Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 127,
No. 12, pp. 1061-1069 (2001).
[43] Seek, J. W., Kim, O. Y., Chung, C. K., and Kim, M. M., “Evaluation
of ground and building settlement near braced excavation sites by
model testing,” Canadian Geotechnical Journal, Vol. 38,
pp. 1127-1133 (2001).
[44] Takemura, J., Kondoh, M., Esaki, T., Kouda, M., and Kusakabe, O.,
“Centrifuge model tests on double propped wall excavation in soft
clay,” Soil and Foundations, Vol. 39, No. 3, pp. 75-87 (1999).
[45] Tsai, J. S., Jou, L. D., and Hsieh, H. S., “A full-scale stability
experiment on a diaphragm wall trench,” Canadian Geotechnical
Journal, Vol. 37, pp. 379-392 (2000).
[46] Vermeer, P. A., Punlor, A., and Ruse, N., “Arching effects behind a
soldier pile wall,” Computer and Geotechnics, Vol. 28, No. 6,
pp. 379-396 (2001).
[47] Zhang, S. D., and Zhang, H. D., “Stability of deep excavations in soft
clay,” Centrifuge 94, Rotterdam, pp. 643-648 (1994).
[48] Das, B.M. (1998). Principles of Foundation Engineering, 4th ed.,
PWS Publishing.
指導教授 李崇正(Chung-Jung Lee) 審核日期 2008-10-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明