博碩士論文 90423026 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:74 、訪客IP:3.144.4.81
姓名 林志弘(Jyh-Horng Lin)  查詢紙本館藏   畢業系所 資訊管理學系
論文名稱 中輟生預測系統之探索-資料挖掘之應用
(The Initial Research of The Predictive System of Dropouts - The Apply of Data-mining)
相關論文
★ 技術商品銷售之技術人員關鍵職能探討★ 資訊委外之承包商能力、信任及溝通與委外成效關係之個案研究
★ 兵工技術軍官職能需求分析-以某軍事工廠為例★ 不同楷模學習模式對VB程式語言學習之影響
★ 影響採購「網路資料中心產品」因素之探討★ 資訊人員績效評估之研究—以陸軍某資訊單位為例
★ 高職資料處理科學生網路成癮相關因素及其影響之探討★ 資訊服務委外對資訊部門及人員之衝擊-某大型外商公司之個案研究
★ 二次導入ERP系統之研究-以某個案公司為例★ 資料倉儲於證券產業應用之個案研究
★ 影響消費者採用創新數位產品之因素---以整合式手機為例★ 企業合併下資訊系統整合過程之個案研究
★ 資料倉儲系統建置之個案研究★ 電子表單系統導入之探討 - 以 A 公司為例
★ 企業資訊安全機制導入與評估–以H公司為例★ 從人力網站探討國內資訊人力現況–以104銀行資料為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 社會上常常傳出許多青少年的犯罪事件,根據研究顯示,涉案的青少年中,多屬「中輟生」,因此令人關切中輟問題的嚴重性。因為,中輟生的產生,涉及了社會與教育資源的浪費、以及中輟生的個人生涯發展等;而中輟生犯罪所帶給社會的傷害,更是難以估計。
目前關於中輟生的研究大都是侷限於中輟成因的探討,以及中輟生的輔導及復學的相關研究,少有針對中輟行為預測的研究報告,所以本研究主要目的是探討資料挖掘應用於中輟生預測的可行性。
本研究提出以成本敏感預測的分類觀念,利用問卷所收集到的實際學生中輟資料,以CART及C4.5兩種演算法進行實證研究,研究發現以實際資料分配比例預測,以CART演算法所建立的預測模型中,成本差異的提升可以有效提升中輟生預測的準確性,若是以對稱資料分配及專家投票決策方法進行預測時,成本差異提升並無法有效提升預測能力。
摘要(英) According to the researches, most of the dropouts are involved in the social criminal affairs. This situation are so concerned by us. This serious problem is something to with the waste of human power and educational resources. The hurt to our society of this problem is hard to count.
At present, the researches of this problem just focus on the cause of forming, guidance and the career developing of personnel. Therefore, this research’s purpose is about the possibility of data-mining research of the predictive system of the dropouts.
The approach of this research is to provide the predictive concept of the classification of cost-sensitive and use the questionnaire to collect the information of the real datum of the dropouts. Besides, This purpose of the research uses two different ways of algorithms, CART and C4.5, to approve its possibility so as to show the precise of the predictive system of dropouts could be effectively promote by the predictive model constructed by the CART algorithms, but “Unbalance Data Distribution Adjust Strategy” can not raise the predict effect of dropouts.
關鍵字(中) ★ 資料挖掘
★ 中輟生預測
★ 成本敏感預測
★ 決策樹
★ 非對稱資料分配
關鍵字(英) ★ Dropouts Predict
★ Mining
★ Cost-sensitive Predict
★ Decision Tree
論文目次 目錄.i
圖目錄...........................................................................................................................ii
表目錄.........................................................................................................................iii
第一章緒論.................................................................................................................1
第一節研究背景及動機................................................................................1
第二節研究目的............................................................................................2
第三節研究步驟及流程................................................................................3
第四節研究範圍及限制................................................................................4
第五節名詞解釋............................................................................................5
第二章文獻探討.........................................................................................................9
第一節中途輟學基本概念及研究................................................................9
第二節資料挖掘(data mining)....................................................................14
第三章研究方法.......................................................................................................26
第一節預測模型建立..................................................................................26
第二節決策樹修剪......................................................................................30
第三節挖掘工具簡介..................................................................................32
第四節資料來源..........................................................................................37
第四章實證評估.......................................................................................................38
第一節實驗資料..........................................................................................38
第二節實驗設計..........................................................................................43
第三節模型評估..........................................................................................45
第四節實驗結果..........................................................................................47
第五節中輟生之預測效果..........................................................................58
第五章結論及建議...................................................................................................60
第一節研究發現及貢獻..............................................................................60
第二節研究限制..........................................................................................61
第三節研究建議..........................................................................................62
第四節未來研究方向..................................................................................62
參考文獻.....................................................................................................................64
附錄一:實用技能班學生學習生活問卷.................................................................67
參考文獻 1. 江文雄、田振榮,民86,高職實用技能班實施成效與學習策略之研究。臺北:教育部技職司。
2. 行政院主計處,民90,國民中小學中輟學原因之統計資料分析,台北。
3. 吳芝儀,民90,中輟學生的危機與轉機,台北,濤石出版社。
4. 吳美枝,民90,中輟學生問題與輔導之行動研究,國立中正大學犯罪防治研究所碩士論文。
5. 法務部,民91,少年犯罪概況及其分析,台北:法務部犯罪研究中心。
6. 邱義堂,民89,通信資料庫之資料挖掘:客戶流失預測之研究,國立中山大學資訊管理學系研究所碩士論文。
7. 段秀玲,民77,中途輟學國中生與一般國中生在生活適應及親子關係上差異之比較研究,輔導月刊,24卷,頁31-41。
8. 商嘉昌,民83,中途輟學及青少年犯罪:以新竹少年監獄為例,國立政治大學社會學研究所碩士論文。
9. 張人傑,民83,改進輟學研究需解決的問題,教育研究雙月刊,37期,頁28-35。
10. 張佃富、邱文忠,民83,高級職業學校學生中途輟學原因與輔導策略之研究,教育廳專案研究報告,台灣省教育廳。
11. 教育部,民82,「延長以職業教育為主的國民教育」第一、二、三階段計畫執行概況及成效檢討報告。
12. 教育部,民84,職業學校法修正條文,延教班更名為實用技能班,教育部公報,頁7-8。
13. 教育部中部辦公室,民90,台灣區九十學年度辦理實用技能班概況手冊,臺中。
14. 梁志成,民82,台北市高及職業學校學生中途輟學因素及其輔導預防策略調查研究,國立台灣師範大學工業教育研究所碩士論文。
15. 許文敏,民90,實用技能班學生學習滿意度之研究,國立台灣師範大學工業教育研究所碩士論文。
16. 黃木添、王明仁,民87,兒童虐待的原因及預防,社區發展季刊,81期,頁189-196。
17. 葉涼川譯,民90,CRM Data Mining 應用系統建置,麥格羅.希爾國際出版公司。
18. 劉玉玲,民91,青少年心理學,台北,揚智文化事業。
19. 鄭重趁,民88,中途學校與中輟生輔導,訓育研究,38卷2期,頁45-48。
20. 鄭增財,民89,實用技能班學生價值觀與學習行為之分析研究,國立台灣師範大學工業教育研究所博士論文。
21. 鄧煌發,民90,國中生輟學原因及其偏差行為相關性之研究,國立中央警察大學犯罪防治研究所博士論文。
22. 羅清水,民89,教育政策執行評估之研究— 以高職實用技能班政策為例,國立臺灣師範大學博士論文。
23. Battin-Pearson, S., Newcomb, M.D., Abbott, R.D., Hill, K.G., Catalano, R.F., & Hawkins, J.D. (2000), “Predictors of early high school dropout: A test of five theories,” Journal of Educational Psychology, 91, 568-582.
24. Berry J. A. and Linoff G. (1997), Data Mining Techniques : For Marketing, Sales, and Customer Support, John Wiley & Sons.
25. Bradley, Andrew P. and Lovell, Brian C. (1995), “Cost-Sensitive Decision Tree Pruning: Use of the ROC Curve ,” In Proceedings Eighth Australian Joint Conference on Artificial Intelligence, November, 1-8 / 565, Canberra, Australia.
26. Breiman,L., Friedman,J.H., Olshen,R.A., and Stone,C.J. (1984), “Classification and regression trees,” Chapman and Hall.
27. C. J. van RIJSBERGEN. (2003), “Information Retrieval,” http://www.dcs.gla.ac.uk/Keith.
28. Campbell, T. C., & Duffy, M. (1998). “Dropping out of secondary school: A descriptive discriminant analysis of early dropouts, late dropouts, alternative completers, and stayins.” Research in the Schools, 5(1), 1-10.
29. Chan P., Fan W., Prodromidis A., and Stolfo S. (1999), “Distributed data mining in credit card fraud detection,” IEEE Intelligent Systems, 146,67-74.
30. Duchenfield, M. (1997), “The performance of at-risk youth as tutors,” Technical report, SC: Clemsom University.
31. Ekstrom, R. B., Goertz, J. M., Pollack, J. M. & Rock, D. A. (1986), “Who Drops Out of High School and Why? Findings From a National Study,” In School Dropouts: Patterns and Policies , 52-69.
32. Elank C. (2002), “The Foundations of Cost-Sensitive Learning,” Proceedings of the Seventeenth International Joint Conference on Artificial Intelligence.
33. Grupe, FH, and Owrang, MM, (1995), “Data Base Mining Discovering New Knowledge And Cooperative Advantage,” Information Systems Management, 12(4),26-31.
34. Hamilton, S.F. (1986), “Raising standard and reducing dropout rates,” Teacher College Record, 87, 410-429.
35. Han, J. & Kamber, M. (2001), “Data mining: concepts and techniques”., SanFrancisco: Morgan Kaufmann Publishers.
36. Janosz, M., Leblanc, M., Boulerice, B., and Tremblay, R.E. (1997), “Disentangling the weight of school dropout predictors: A test in two longitudinal samples,” Journal of Youth & Adolescence, 26, 733-762.
37. Janosz, M., Leblanc, M., Boulerice, B., and Tremblay, R.E. (2000), “Predicting Different Types of School Dropout: A Typological Approach with two longitudinal samples,” Journal of Educational Psychology, 92(1), 171-190.
38. Kass G.V. (1980), “An Exploratory Technique for Investigating Larg Quantities of Categorical Data,” Applied Sratistics, 29, 119-127.
39. Kretschmann, E. and Apweiler, R. (2001), “Automaticrule generation for protein annotation with the C4.5 data-mining algorithm applied on peptides in Ensembl. Proc.” http://www.bioinfo.de/isb/gcb01/talks/kretschmann/index.html.
40. Oakland, T. (1992), “School dropout: Characteristics and prevention.,” Journalof Adolescent Research, 1, 201-208.
41. Piatetsky-Shapiro G. and Frawley W. (1991), “Knowledge Discovery in Databases,” AAAI Press.
42. Prodromidis A., Chan P., and Stolfo S. (2000), “Meta-learning in distributed data mining systems: Issues and approaches,” In Advances in Distributed and Parallel Knowledge Discovery, H. Kargupta and P. Chan editors, Chapter 3, AAAI/MIT Press.
43. Quinlan, J.R. (1979). “Induction over large data bases.” Technical Report HPP-79-14, Heuristic Programming Project, Stanford University.
44. Quinlan,J.R. (1986), “Induction of decision trees,” Machine Learning, 1, 81-106.
45. Quinlan,J.R. (1993), “C4.5:Programs for Machine Learning.” San Mateo,CA:Morgan Kaufmann.
46. Shannon,C.E. (1984), “A mathematical Theory of Communication,” The Bell System Technical Journal, 27, 379-423.
47. Weiss, G.M., Provost F. (2001), “The Effect of Class Distribution on Classifier Learning: An Empirical Study,” Technical Report ML-TR-44,Department of Computer Science, Rutgers University
指導教授 周惠文(H. W. Chou) 審核日期 2003-6-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明