博碩士論文 963202047 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:3.137.161.222
姓名 李政鴻(Zheng-hong Li)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 不同丙烯酸酯純化後對水泥系材料性質之影響
(In study on different acrylate through the use of H2O2 purification and results of cementitious materials)
相關論文
★ 水泥製程於資源再利用之研究★ 焚化底渣水洗前處理及應用之探討
★ 鈦鐵礦氯化爐碴應用於道路基底層及礦尾渣水洗前處理之研究★ 水洗礦尾渣造粒後之粒料特性探討
★ 水洗礦尾渣取代水泥製品中細粒料之可行性研究★ 陶瓷業無機性污泥資源化用於人工細粒料及自充填混凝土之研究
★ 磚製品中摻配鈦砂之較佳配比研究★ 單維電化學傳輸陽離子技術抑制混凝土ASR之研究
★ 不同醇類製備聚丙烯酸酯應用於水泥基材的行為研究★ 人工粒料作為路基材料及CLSM對RC構件和金屬腐蝕之影響研究
★ 經高溫製程產生含矽再生粒料之鹼質活性研究★ 改質人工粒料的應用策略基礎研究
★ 爐碴作為混凝土細粒料的膨脹安定化方法及檢測技術研究★ 鎂鋁氧化物及類水滑石對氯離子吸附行為之研究
★ 以CFB副產石灰作為水淬爐石粉激發劑之可行性探討★ 加速鋰離子傳輸技術中不同電極間距對離子傳輸行為的影響研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究以不同醇類與丙烯酸進行酯化反應後所得之丙烯酸酯聚合物,透過使用過氧化氫純化處理,將丙烯酸酯中影響混凝土耐久性之醇類移除,探討純化後之丙烯酸酯聚合物對水泥系材料性質之影響。將純化後之丙烯酸酯分別加入水泥漿、水泥砂漿和混凝土進行基本物理試驗,評估純化後之丙烯酸酯聚合物對水泥系材料之影響。綜合評估試驗結果,丙烯酸酯聚合物經雙氧水純化處理後,在適當的配比下,對水泥材料力學性質和耐久性有適度之改質成效,其中丙烯酸和二乙二醇莫爾比為1 : 0.29,反應生成之丙烯酸二乙二酯聚合物在最佳酯化率下,添加1.0 %雙氧水純化處理後,其改質成效最為顯著。在水泥及材料新拌性質方面,純化後之丙烯酸酯隨著添加量增加,水泥系材料流動性會隨之增加;水泥漿凝結時間亦隨著雙氧水用量增加,有縮短初、終凝的現象;在硬固水泥砂漿性質方面,固定聚合物添加0.1 %時,具有最佳之成效,其抗壓強度較控制組可提高15.06~22.87 %,且抗彎和黏結強度亦較控制組優良;添加純化後之丙烯酸酯對於水泥砂漿乾縮量無明顯收縮現象。混凝土基本性質試驗結果顯示,添加純化後之丙烯酸二乙二酯,其28天抗壓強度較控制組可提高14.1 %,純化後之丙烯酸酯可延長混凝土受高溫環境下,試體強度提早折減之影響。
摘要(英) In this study, the removal of redundant alcohol of acrylate that affects concrete durability are carried out in different alcohols and acrylic acid derived from the etherification reaction of acrylic ester polymer through the use of H2O2 purification. Discussion on the impact of purified acrylic polymer to cement materials is also done. After purification by adding acrylic, basic physical property test are carried out on the cement, cement mortar, and concrete.
Comprehensive evaluation of the test results indicates that for acrylate polymer treated with H2O2 purification, the most significant modification to the concrete materials properties and durability was achieved when the Moore ratio of acrylic acid and diethyl glycol is 1:0.29; the reaction of acrylic acid and diethyl ester polymer yielded the best possible result with the addition of 1.0 % H2O2 purification treatment.
In the fresh cement mortar, the addition of purified acrylate addition to cement materials will cause an increase in mobility workability; slurry setting time will also increase with the amount of H2O2 due to the shortening of the beginning of the end of condensate phenomenon. In the hardened cement mortar with 1 % polymer addition, the compressive strength increased 15.06-22.87 % compared to the control group, the flexural bond strength is also better than the control group. The addition of purified acrylic cement mortar also prevented the occurrence of dry shrinkage. Result of testing on the basic properties of concrete shows that the addition of purified diethyl’s esters of acrylic acid increased the 28 days compressive strength by 14.1 % compared to the control group. When purified acrylic uses are extended to the higher temperature environment of concrete, the early strength of the concrete are reduced.
關鍵字(中) ★ 丙烯酸酯
★ 純化
★ 酯化反應
關鍵字(英) ★ Purify
★ Acrylate
★ Etherification reaction
論文目次 第一章 緒論 ............................................................................................................... - 1 -
1.1 研究動機 .......................................................................................................... - 1 -
1.2 研究目的 .......................................................................................................... - 1 -
1.3 研究內容 .......................................................................................................... - 2 -
第二章 文獻回顧....................................................................................................... - 4 -
2.1 高分子聚合物基本結構 .................................................................................. - 4 -
2.1.1 聚合物組成與單體結構[4] ........................................................................ - 4 -
2.1.2 聚合物反應機理[4] .................................................................................... - 4 -
2.1.3 聚合物與水泥之物理性結合反應 ........................................................... - 4 -
2.1.4 聚合物與水泥之化學性結合反應 ........................................................... - 4 -
2.2聚合物歷史發展簡述 ....................................................................................... - 5 -
2.3 聚合物應用型態 .............................................................................................. - 6 -
2.4 聚合物改質水泥基材類型 .............................................................................. - 9 -
2.4.1 聚合物水泥複合材料種類 ....................................................................... - 9 -
2.4.2 聚合物改質水泥系材料類型 .................................................................- 10 -
2.4.3 聚合物於各國發展概況 .........................................................................- 12 -
2.4.4 聚合物改質機理模型 .............................................................................- 13 -
2.4.5 聚合物改質砂漿孔隙成效[28] .................................................................- 15 -
2.5 丙烯酸系聚合物概述[28] ................................................................................ - 17 -
2.5.1 丙烯酸系聚合物與水泥系材料之改質機理 .........................................- 17 -
2.5.2 丙烯酸系相關文獻概述 .........................................................................- 18 -
第三章 試驗計畫.....................................................................................................- 21 -
3.1 試驗規劃與試驗流程 .................................................................................... - 21 -
3.1.1 試驗規劃 .................................................................................................- 21 -
3.1.2 試驗流程 .................................................................................................- 23 -
3.2 試驗材料 ........................................................................................................ - 29 -
3.3試驗設備與儀器 ............................................................................................. - 34 -
3.4 試驗項目及方法 ............................................................................................ - 40 -
3.4.1 丙烯酸酯聚合物化學反應 .....................................................................- 41 -
3.4.2 製作丙烯酸酯聚合物及純化處理 .........................................................- 43 -
3.4.3 改質水泥漿試驗 .....................................................................................- 44 -
3.4.4 改質水泥砂漿試驗 .................................................................................- 45 -
3.4.5改質混凝土試驗 ......................................................................................- 50 -
第四章 結果與討論.................................................................................................- 52 -
4.1 丙烯酸酯變數控制 ........................................................................................ - 52 -
4.1.1 反應溫度與反應時間影響 .....................................................................- 52 -
4.1.2 催化劑濃度影響 .....................................................................................- 53 -
4.2 最佳酯化率與純化丙烯酸酯 ........................................................................ - 56 -
4.2.1 最佳酯化率之計算 .................................................................................- 58 -
4.2.2純化丙烯酸酯之方法 ..............................................................................- 61 -
4.3 丙烯酸酯聚合物改質水泥漿性質 ................................................................ - 62 -
4.3.1 新拌性質 .................................................................................................- 62 -
4.3.2 改質水泥漿之工作性 .............................................................................- 63 -
4.3.3 改質水泥漿之凝結時間 .........................................................................- 71 -
4.3.4 丙烯酸酯改質水泥漿體硬固性質 .........................................................- 75 -
4.4 丙烯酸酯聚合物改質水泥漿體性質試驗小結 ............................................ - 80 -
4.5 丙烯酸酯聚合物改質水泥砂漿性質 ............................................................ - 82 -
4.5.1 新拌水泥砂漿性質 .................................................................................- 82 -
4.5.2 水泥砂漿吸水率 .....................................................................................- 85 -
4.5.3 砂漿初始吸水速率 ................................................................................- 87 -
4.5.4 改質水泥砂漿力學試驗 .........................................................................- 89 -
4.5.6 改質砂漿固定水灰比0.55與固定流度值110±5 %之強度差異 ........- 97 -
4.5.7 水泥砂漿健性試驗 ................................................................................- 98 -
4.5.8 乾燥收縮(Drying shrinkage)試驗 ..........................................................- 99 -
4.5.9 丙烯酸酯聚合物改質水泥砂漿性質試驗小結 ...................................- 100 -
4.6 丙烯酸酯聚合物改質混凝土的性質 ......................................................... - 102 -
4.6.1 新拌混凝土性質 ...................................................................................- 102 -
4.6.2 抗壓強度 ...............................................................................................- 103 -
4.6.3 超音波波速量測 ....................................................................................- 105 -
4.6.4 混凝土模擬火害窯燒實驗 ...................................................................- 106 -
第五章 結論與建議...............................................................................................- 109 -
5.1 結論 .............................................................................................................. - 109 -
5.2 建議 .............................................................................................................. - 111 -
參考文獻 ................................................................................................................. - 112 -
參考文獻 1. John, P., “Corrosion of Steel in Concrete,” Cement and Concrete Research Vol. 20, NO. 2, pp. 189-212 (1984)
2. Malhotra, V. M., Ramachandran, V. S., and Feldman, R. F., “Aitkin condensed Silica Fume in concrete,” CRC Press. Florida. pp. 221, 1987。
3. J. M. L. Reis, A. J. M. Ferreira, “Fracture behavior of glass fiber reinforced polymer concrete,” polymer testing (2002).
4. 徐武軍,「高分子材料導論」,台北五南圖書出股公司2004。
5. Afridi, M. U. K., Ohama, Y., Demura, K., and Iqbal, M. Z., “A note on the comparison of crack resistance of Ca(OH)2 crystals of unmodified and polymer-modified mortars in carbonated atmosphere,” Cement and Concrete Research, Vol. 31, No. 11, pp.1643-1645 (2001).
6. Al-Zahrani, M. M., Maslehuddin, M., Al-Dulaijan, S. U., and Ibrahim, M., “Mechanical properties and durability characteristics of polymer and cement-based repair materials,” Cement and Concrete Composites, Vol. 25, No. 4, pp. 527-537 (2003).
7. Afridi, M. U. K., Ohama, Y., Demura, K., and Iqbal, M. Z., “Hydrogarent-type cubic crystals in polymer-modified mortars,” Cement and Concrete Research, Vol. 27, No.12, pp. 1787-1789 (1997).
8. Chandra, S., and Flodin, P., “Interactions of polymers and organic admixtures on Portland cement hydration,” Cement and Concrete Research, Vol. 17, No. 6, pp. 875-890 (1987).
9. Ohama, Y., “Recent progress in concrete-polymer composites,” Advn Cem Bas Mat., Vol. 5, pp. 31-40 (1997).
10. Fowler, D.W., “Polymer in concrete: a vision for the 21st century,” Cement and Concrete Composites, Vol. 21, No. 5, pp. 449-452 (1999).
11. Ohama, Y., “Polymer-based admixtures,” Cement and Concrete Composites,Vol. 20, NO. 2, pp. 189-212 (1998).
12. Mindess, S., Young, J. F., and Darwin, D., Concrete. 2nd ed., Prentice-Hall, Inc., Upper Saddle River, New Jersey, pp. 583-598 (2002).
13. Schulze, J., and Killermann, O., “Long-term performance of redispersible powders in mortars,” Cement and Concrete Research, Vol. 31, No. 3, pp. 357-362 (2001).
14. The Dow Chemical Company, http://www.dow.com/
15. Fowler, D. W., Huang, Y., Wu, K. and Chen, Z., “In polymer in concrete,” Proceedings of the 6th International Congress on Polymers in Concrete, International Academic Publishers, Beijing, pp.10-17 (1990).
16. Sakai, E., and Sugita, J., “Composite mechanism of polymer modified cement,” Cement and Concrete Research, Vol. 25, No. 1, pp. 127-135 (1995).
17. Fu, X., and Chung, D. L., “Submicron carbon filament cement-matrix composites for electromagnetic interference shielding,” Cement and Concrete Research, Vol. 26, No. 10, pp. 1467-1472 (1996).
18. Fiche, R. O., Gauthier, C., Clamen, G., and Boch, P., “Microstructure aspects in a polymer-modified cement,” Cement and Concrete Research, Vol. 28, No. 12, pp. 1687-1693 (1998).
19. Rah, C. Y., Kim, C. E., Lee, C. S., Kim, K. I., and Lee, S. K., “Preparation and characterization of absorbent polymer-cement composites,” Cement and Concrete Research, Vol. 29, No. 2, pp. 231-236 (1999).
20. Silva, D. A., and Montero, P. J. M., “The influence of polymers on the hydration of Portland cement phases analyzed by soft X-ray transmission microscopy,” Cement and Concrete Research, Vol. 36, No. 8, pp. 1501-1507 (2006).
21. Silva, D. A., John, V. M., Ribeiro, J. L. D., and Roman, H. R., “Pore size distribution of hydrated cement pastes modified with polymers,” Cement and Concrete Research, Vol. 31, No. 8, pp. 1177-1184 (2001).
22. Kim, J. H., and Robertson, R. E., “Prevention of air void formation in polymer-modified cement mortar by pre-wetting,” Cement and Concrete Research, Vol. 27, No. 2, pp. 171-176 (1997).
23. Jenni, A., Holzer, L., Zurbriggen, R., and Herwegh, M., “Influence of polymers on microstructure and adhesive strength of cementations tile adhesive mortars,” Cement and Concrete Research, Vol. 35, No. 1, pp. 35-50 (2005).
24. Beeldens, A., Monteny, K., Vincke, E., Belie, N. D., Gemert, D. V., Taerwe, L., and Verstraete, W., “Resistance to biogenic sculpture acid corrosion of polymer-modified mortars,” Cement and Concrete Composites, Vol. 23, No. 1, pp. 47-56 (2001).
25. Martinez-Ramirez, S., Zamarad, A., Thompson, G. E., and Moore, B., “Organic and inorganic concrete under SO2 pollutant exposure,” Cement and Concrete Research, Vol. 37, No. 10, pp. 933-937 (2002).
26. Vincke, E., Wanseele, E. V., Monteny, J., Beeldens, A., Belie, N. D., Taerwe, L., Gemert, D. V., and Verstraete, W., “Influence of polymer addition on biogenic sulfuric acid attack of concrete,” International Biodeterioration & Biodegradation, Vol. 49, pp. 283 - 292 (2002).
27. Monteny, J., Belie, N., Vincke, E., Verstraete, W., and Taerwe, L., “Chemical and microbiological tests to simulate sulfuric acid corrosion of polymer-modified concrete,” Cement and Concrete Research, Vol. 31, No. 9, pp. 1359-1365 (2001).
28. 謝孟勳,「不同醇類製成之丙烯酸酯對水泥基材的改質成效研究」,國立中央大學研究所碩士論文(2008)。
29. Walters, D. G., “Comparison of latex-modified Portland cement mortars,” ACI Materials Journal, Vol. 87, No. 4, pp. 371-377 (1990).
30. Gao, J. M., Qian, C. X., Wang, B., and Morino, K., “Experimental Study on Properties of Polymer-Modified Cement Mortars with Silica Fume,” Cement and Concrete Research, Vol. 32, No. 1, pp. 41-45 (2002).
31. 林世堂,「水溶性樹脂對水泥基複合材料的早期收縮開裂敏感性能的巨、微觀探討」,國立海洋大學材料工程研究所博士資格考審查資料 (2007)。
32. Kantro, D. L., “Influence of water-Reducing admixtures on properties of cement paste - a miniature slump test,” Cement Concrete and Aggregates, Vol. 2, No. 2, pp. 95-108 (1980).
33. 郭文田,「添加強塑劑對水泥材料水化及其早期行為之影響」,國立中央大學研究所博士論文(2000)。
34. Hall, C., “Water Captivity of Mortars and Concretes: A Reviews,” Magazine of Concrete Research, Vol. 41, No. 147, pp. 51-56 (1989).
35. Silva, D.A., Roman, H.R. and Gleize, P.J.P., “Evidences of chemical interaction between EVA and hydrating Portland cement,” Cement Concrete and Research (2002).
36. Afridi, M.U.K., Ohama, Y., Zafar. M., and Demura, K., “Water retention and adhesion of powdered and aqueous polymer-modified mortar,” Cement and Concrete Composites (1995).
指導教授 李釗(Chau Lee) 審核日期 2009-7-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明