博碩士論文 963202060 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:58 、訪客IP:3.15.171.202
姓名 郭怡馨(Yi-Hsin Guo)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 蒸發皿蒸發率之風洞實驗
(A Laboratory Experiment on the Evaporation rate of Class A Evaporation Pan)
相關論文
★ 定剪力流中二維平板尾流之風洞實驗★ 以大渦紊流模式模擬不同流況對二維方柱尾流之影響
★ 矩形建築物高寬比對其周遭風場影響之研究★ 台灣地區風速機率分佈之研究
★ 邊界層中雙棟並排矩形建築之表面風壓量測★ 排放角度與邊牆效應對浮昇射流影響之實驗研究
★ 低層建築物表面風壓之實驗研究★ 圓柱體形建築物表面風壓之實驗研究
★ 最大熵值理論在紊流剪力流上之應用★ 應用遺傳演算法探討海洋放流管之優化方案
★ 均勻流中圓柱體形建築物表面風壓之風洞實驗★ 大氣與森林之間紊流流場之風洞實驗
★ 以歐氏-拉氏法模擬煙流粒子在建築物尾流區中的擴散★ 以HHT分析法研究陣風風場中建築物之表面風壓
★ 以HHT時頻分析法研究陣風風場中物體所受之風力★ 風吹落物之軌跡預測模式與實驗研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究在控制的環境下,研究風速、淨輻射量、蒸汽壓差等環境參數對蒸發皿及裸土之蒸發率、短草(百喜草和地毯草)蒸發散率的影響,實驗結果顯示:在相同的環境狀況下,百喜草的蒸發散率最大,地毯草次之,蒸發皿的蒸發率最小。四者皆會隨著風速、淨輻射量及蒸汽壓差的增加而增加。且短草在夜晚和白天皆有蒸散的現象,在相同風速下,百喜草的夜晚蒸散率為白天蒸散率的54~67%,地毯草夜晚蒸散率為白天蒸散率的60~67%。本研究亦發現蒸發皿的初始水深會影響蒸發皿的蒸發率,當風速U = 6 m/s,初始水深從15公分變為11公分時,皿蒸發率並未有明顯地減少,但初始水深變為7公分時,則皿蒸發率較水深15公分減少55%。此外,本研究依據量測得之皿蒸發量,求得一個新的風函數,結合此風函數與Thom et al. (1981)的模式可用來預測蒸發皿的蒸發率,模式預測值和本研究的觀測值十分接近。
本研究並利用FAO-56 PM公式及Penman-Monteith公式預測裸土蒸發率、短草的蒸發散率。結果顯示FAO-56 PM公式及Penman-Monteith公式皆可用於預測裸土蒸發率及短草的蒸發散率,裸土蒸發率的預測優於短草的蒸發散率之預測。
摘要(英) The influences of wind speed, net radiation and vapor pressure deficit (VPD) on the evaporation rates of Class A pan, bare soil and the evapotranspiration rates of grasses were experimentally investigated in this study. The results demonstrated that the evaporation (and evapotranspiration) rates increase as wind speed, net radiation and VPD increase. Under the same wind speed, the ratio between the night-time and daytime evapotranspiration rate was 54~67% for Paspalum notatum Flügge, the ratio was 60~67% for Axonopus compressus (Sw.) P. Beauv. It was also found that the initial water depth in the pan will affect the pan evaporation rates. Under the same wind speed U = 6 m/s, the evaporation rate of water depth change from 15 cm to 11 cm, the evaporation rate decreases about 0.8%; but when the water depth changes to 7 cm, the evaporation rate decreases 55%. Based on the measured pan evaporation rates, a new wind function is proposed. By comparing with the predictions of Thom et al. (1981), Pereira et al. (1995) and Rayner (2007), the model of Thom et al. (1981) integrate with the new wind function gives the best prediction.
The evaporation rates of bare soil and the evapotranspiration rates of grasses were compared with the prediction of FAO-56 PM equation and Penman-Monteith equation. The comparison shows that the predictions of FAO-56 PM equation and Penman-Monteith equation for the evaporation rate of bare soil are better than for that for the evapotranspiration rates of grasses.
關鍵字(中) ★ 蒸發皿
★ 蒸發皿係數
★ 風洞實驗
★ 潛勢蒸發散
關鍵字(英) ★ potential evapotranspiration
★ Evaporation pan
★ pan coefficient
★ wind tunnel experiment
論文目次 Abstract I
Contents III
Notation IV
Figure captions VI
Table captions VIII
1. Introduction 1
2. Experimental setup 9
3. Results and discussion 12
3.1 Wind speed experiments 12
3.2 Radiation experiments 14
3.3 Humidity experiments 15
3.4 Evapotranspiration models 16
4. Conclusions 17
References 19
Figures 22
Tables 39
Appendix A 47
參考文獻 Allen, R. G., and Pruitt, W. O. (1991). “FAO-24 reference evapotranspiration factors.” Journal of Irrigation and Drainage Engineering, ASCE, 117 (5), 758-773.
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M. (1998). Crop evapotranspiration: Guidelines for computing crop water requirements, FAO Irrigation and drainage paper, Paper 56. Food and Agriculture Organization of the United Nations, Rome, Italy.
Brutsaert, W. (1982). Evaporation into the Atmosphere. D. Reidel Publishing Co., The Netherlands. 113-116.
Brutsaert, W., and Parlange, M. B. (1998). “Hydrologic cycle explains the evaporation paradox.” Nature, 396, 30.
Chattopadhyay, N. and Hulme, M. (1997). “Evaporation and potential evapotranspiration in India under conditions of recent and future climate change.” Agricultural and Forest Meteorology, 87, 55-73.
Chu, C. R., Hsieh, C.-I., Wu, S.-Y. and Phillips, N. G. (2009). “Transient response of sap flow to wind speed.” Journal of Experimental Botany, 60(1), 249-255. doi:10.1093/jxb/ern282.
Cuenca, R. H., (1989). Irrigation system design: an engineering approach. Prentice-Hall, Englewood Cliffs, New Jersey, p.552.
Dawson, T. E., Burgess, S. S. O., Tu, K. P., Oliveira, R.S., Santiago, L.S., Fisher, J.B., Simonin, K.A., Ambrose, A.R. (2007). “Night-time transpiration in woody plants from contrasting ecosystems”, Tree Physiology, 27, 561-575.
Dingman, S.L., (2002). Physical Hydrology. 2nd edition, Prentice Hall Inc., New Jeresy, 288-290.
Doorenbos, J. and Pruitt, W. O., (1977). Guidelines for predicting crop water requirements. FAO Irrigation and Drainage Paper 24. Food and Agriculture Organization of the United Nations, Rome, Italy.
Grace, J., (1974). “The effect of wind on grasses. I. Cuticular and stomatal transpiration.” Journal of Environmental Botany. 25(86), 542-551.
Grismer, M. E., Orang, M., Snyder, R., and Matyac, R., (2002). “Pan evaporation to reference evapotranspiration conversion methods.” Journal of Irrigation and Drainage Engineering. ASCE, 128(3), 180-184.
Hobbins, M. T., Ramirez, J. A. and Brown, T. C., (2004). “Trends in pan evaporation and actual evapotranspiration across the conterminous U.S.: Paradoxical or complementary?” Geophy. Res. Lett., 31, L13503, doi:10.1029/2004GL019846.
Irmak, S., Haman, D. Z., and Jones, J. W., (2002). “Evaluation of class A pan coefficients for estimating reference evapotranspiration in humid location.” Journal of Irrigation and Drainage Engineering. ASCE, 128(3), 153-159.
Jackson, R. D., (1973). “Diurnal changes in soil water content during drying.” Soil Sci. Soc., 37-55.
Liu, B., Xu, M. Henderson, M. and Gong, W. (2004). “A spatial analysis of pan evaporation trends in China, 1955–2000.” J. of Geophysical Research, 109, 1-9.
Lopez-Urrea, R., Martın de Santa Olalla, F., Fabeiro, C., and Moratalla, A., (2006). “An evaluation of two hourly reference evapotranspiration equations for semiarid conditions.” Agricultural Water Management. 86, 277-282.
Molina Martinez J. M., Martinez Alvarez, V., Gonzalez-Real, M. M., and Baille, A., (2006). “A simulation model for predicting hourly pan evaporation from meteorological data.” Journal of Hydrology. 318, 250-261.
Monteith, J. L., (1981). “Evaporation and surface temperature.” Quart. J. Royal Meteor. Soc., 107, 1-27.
Nandagiri, L., and Kovoor, G. M., (2005). “Sensitivity of the Food and Agriculture Organization Penman-Monteith evapotranspiration estimates to alternative procedures for estimation of parameters.” Journal of Irrigation and Drainage Engineering. ASCE, 131(3), 238-248.
Nandagiri, L., and Kovoor, G. M., (2006). “Performance evaluation of reference evapotranspiration equations across a range of Indian climates.” Journal of Irrigation and Drainage Engineering. ASCE, 132(3), 238-249.
Novick, K. A., Oren, R. Stoy, P. C., Siqueira M. B. S. and Katul, G. G. (2009). “Nocturnal evapotranspiration in eddy-covariance records from three co-located ecosystems in the Southeastern U.S.: Implications for annual fluxes.” Agricultural and Forest Meteorology, 149(9), 1491-1504.
Orang, M., (1998). Potential accuracy of the popular non-linear regression equations for estimating pan coefficient values in the original and FAO-24 tables, Report, Calif. Dept. of Water Resources, Sacramento, California, U.S.A.
Penman, H. L., (1948). “Natural evaporation from open water, bare soil and grass.” Proc. Royal Soc. of London. A193, 120-146.
Pereira, A. R. Villa Nova, N. A., Pereira, A. S., and Barbieri, V., (1995). “A model for the class A pan coefficient.” Agricultural and Forest Meteorology, 76(2), 75-82.
Peterson, T. C. Golubev, V. S. and Groisman, P. Y. (1995). “Evaporation losing its strength.” Nature, 377, 687-688.
Raghuwanshi, N. S., and Wallender, W. W., (1998). “Converting from pan evaporation to evapotranspiration.” Journal of Irrigation and Drainage Engineering, ASCE, 124(5), 275-277.
Rayner, D. P., (2007). “Wind run changes: The dominant factor affecting pan evaporation trends in Australia.” Journal of Climate, 20, 3379-3394.
Roderick, M. and Farquhar, G. D., (2002). “The causes of decreased pan evaporation over the past 50 years.” Science, 298, 1410-1411.
Roderick, M. and Farquhar, G. D., (2004). “Changes in Australian pan evaporation from 1970 to 2002.” International Journal of Climatology, 24, 1077-1090.
Roderick, M. and Farquhar, G. D., (2005). “Changes in New Zealand pan evaporation since 1970s.” International Journal of Climatology, 25, 2031-2039.
Sentelhas, P. C. and Folegatti, M. V., (2003). “Class A pan coefficients (Kp) to estimate daily reference evapotranspiration (ET0).” Revista Brasileira de Engenharia Agrícola e Ambiental, Campina Grande, 7(1), 111-115.
Snyder, R. L., (1992). “Equation for evaporation pan to evapotranspiration conversions.” Journal of Irrigation and Drainage Engineering, ASCE, 118(6), 977-980.
Stanhill, G., (2002). “Is the Class A evaporation pan still the most practical and accurate meteorological method for determining irrigation water requirements?” Agricultural and Forest Meteorology, 112(3-4), 233-236.
Tebakari, T., Yoshitani, J. and Suvanpimoi, C. (2005). “Time-space trend analysis in pan evaporation over kingdom of Thailand.” J. of Hydrological Engineering, ASCE, 10 (3), 205-215.
Thom, A.S., Thony J.L. and Vauclin, M., (1981). “On the proper employment of evaporation pans and atmometers in estimating potential transpiration.” Quart. J. Roy. Meteor. Soc., 107, 711-736.
Trajkovic, S., (2005). “Temperature-based approaches for estimating reference evapotranspiration.” Journal of Irrigation and Drainage Engineering, ASCE, 131 (4), 316-323.
指導教授 朱佳仁(Chia-Ren Chu) 審核日期 2009-7-7
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明