摘要(英) |
This research investigated the influence of irrigation water requirement with the change of irrigation operation including channel supply and wire supply. Taoyuan Channel #2 Feeder was selected as study area. The irrigation resource included Shihmen reservoir, Nankan stream and Puxin stream. The agriculture irrigation system model was established by Vinsim model and irrigation water supply data in 2008 was applied. The simulation was divided into five cases. In case 1 to 4, the water supply from the reservoir was reduced in different patterns, up to 0 mm, while in Case 5 the supply from the river weir was changed. Case1 to Case 4 was to investigate the adjusted irrigation water volume which depended on operation methods. Case 5 was to simulate when half of water was supplement by weir gradually. The result showed that the total irrigation water volume decreased to 266mm and 366mm, which depended on paddy storage depth. The rice paddy with weir water supply only could maintain corps survival. The water supply operation which based on the height of ridge could save 200mm of irrigation water. This approach shows high feasibility on operation. Case5 simulation result indicated that the corps still maintained survival in downstream irrigation area.
This study applied Vinsim model to evaluate the impact of irrigation water supply from two sources on the number 2 Feeder rice paddy in Tao-Yuan county, Taiwan. The rice paddy was divided into three zones, A, B and C respectively. These water supply sources originated from the Shimen reservoir via the number 2 Feeder canal and a river weir. Rainfall, evaporation and irrigation supply data from these two sources for 2008 were used to simulate in this study. The water supply from the sources were changed in to 5 cases, The results showed that for case 1 and 2, two zones A, B of rice paddy can satisfy crop growth demand, but for cases 3 and 4, zone B can not satisfy about 10 days of August. In case 5, the water supply from the river weir was reduced 50%. From the application of model it was found out that only these areas d1, d2, d3 and Shalun of Zone C satisfy crop growth demand.
|
參考文獻 |
1. 王如意、易任,「應用水文學(上下冊)」,茂昌圖書公司,1979。
2. 台灣省水利局編,「灌溉排水工程設計(上冊)」,1978。
3. 甘俊二,「灌溉系統配水技術之分析與研究」,台灣大學農工系,1979。
4. 甘俊二、徐玉標、施嘉昌、曹以松,「灌溉排水原理」,中央圖書出版社,1982。
5. 甘俊二,「台灣之輪區配水技術」,1985。
6. 甘俊二、湯松義、林國華,「缺水期輪灌區劃分方法及配水技術之研究」,1992。
7. 甘俊二、鄭俊澤、張煜權,「超量灌溉對環境影響之研究」,中國農業工程學會,1996。
8. 甘俊二、張煜權,「三生水田利用」,農工學報,1997。
9. 甘俊二,「水稻深水灌溉與乾旱時期的用水管理」,農業氣象及農業水資源之應用與管理,行政院農委會農業試驗所,第106-113頁,2002。
10. 甘俊二,「灌溉」,財團法人中興工程科技研究發展基金會,第14-21頁,2005。
11. 吳瑞賢,「水田回歸水應用之探討」,第二屆海峽兩岸農田水利研討會論文集,第180-189頁,1999。
12. 吳瑞賢、林癸妙、李俊福,「水田回歸水量之研究」,農業工程學報,第四十五卷,第一期,第72-82頁,1999。
13. 吳珮菁,「水田回歸水之模式及驗證」,國立中央大學土木研究所碩士論文,1998。
14. 周珮淳,「水田埤塘灌溉系統於農業用水之分析」,國立中央大學土木工程研究所碩士論文,2006。
15. 周珮淳、陳世偉、吳瑞賢,「桃園地區灌溉埤塘於農業用水之分析研究」,第十五屆水利工程研討會,2006。
16. 洪毓謙,「以砂箱實驗探討現地複合土層之滲流機制」,國立中央大學土木工程研究所碩士論文,2000。
17. 桃園農田水利會,「民國97年灌溉計畫書」,2008。
18. 高振程,「水田坵塊系統之回歸水量推估」,國立中央大學土木工程研究所碩士論文,2003。
19. 陳世偉,「區域多元化水資源調配之研究」,國立中央大學土木工程研究所博士論文,2007。
20. 陳豐文,「農地可再利用迴歸水之調查研究-以桃園地區為例」,中原大學土木工程研究所碩士論文,1998。
21. 陳豐文、陳獻、黃勝頂,「台灣地區農地迴歸水之潛勢分析」,台灣水利,第五十三卷,第三期,第74-89頁,2005。
22. 陳獻,「有效雨量之估算」,中國農業工程學會特刊第五號,1979。
23. 陳獻、蔡西銘、陳豐文、陳靖薇、劉日順,「水田灌溉後迴歸水估算模式之建立及應用」,農業工程學報,第五十一卷,第二期,第41-61頁,2005。
24. 連宛渝,「氣候變遷對台灣水稻灌溉需水量及潛能產量之影響」,國立台灣大學農業工程研究所碩士論文,2000。
25. 徐世大、聯合國亞洲暨遠東經濟委員會防洪及水資源關發局,「水文語彙」,經濟部水資源統一規劃委員會出版,1972。
26. 黃浩烈,「水田深水灌溉最佳高度之決定」,國立台灣大學土木工程研究所碩士論文,2007。
27. 莊光明,「農業工程技術辭典」,行政院農業委員會,2002。
28. 經濟部水利署北區資源局,「多元化水資源開發-桃園及新竹地區農業迴歸水調查與可行性評估」,初期工作執行計畫書,第9-27頁,2006。
29. 楊朝仲、張良正、葉欣誠、陳昶憲、葉昭憲,「系統動力學思維與應用」,五南圖書,2007。
30. 經濟部水利署水利規劃試驗所,「農業迴歸水回收再利用研究-雲林地區為例」,嘉德技術顧問股份有限公司,第2-1~2-7頁,2007。
31. 劉君帆,「灌溉系統迴歸水推估方法之研究-以嘉南水利會為例」,國立台灣大學農業工程研究所碩士論文,1998。
32. 鄭建民,「水田滲漏量之探討」,國立台灣大學農業工程研究所碩士論文,1981。
33. 蔡西銘、陳獻、劉日順,「迴歸水的定義及分析方法之比較」,第十一屆水利工程研討會,第F-77~F-80頁,2000。
34. 蔡西銘、陳獻、劉日順,「桃園地區迴歸水利用現況調查及分析(第二年)」,農業水利科技研究發展八十九年度計畫成果發表討論會,第1-19~1-29頁,2001。
35. 駱安華,「回歸水之計算和應用」,台灣水利,第八卷,第二期,第47-56頁,1960。
36. 駱安華,「灌溉水源之估算和運用」,台灣水利,第九卷,第二期,第12-23頁,1961。
37. 駱安華,「水稻灌溉水量之研究」,台灣水利,第十卷,第三期,第17-30頁,1962。
38. 簡傳彬,「水稻田入滲及回歸水之試驗及模擬」,國立中央大學土木工程研究所博士論文,2003。
39. 羅樹孝,「水文學辭典」,茂昌圖書,1995。
40. Mhlanga, B.F.N., Ndlovu, L.S. and Senzanje, A., “Impacts of irrigation return flows on the quality of the receiving waters: A case of sugarcane irrigated fields at the Royal Swaziland Sugar Corporation (RSSC) in the Mbuluzi River Basin (Swaziland)”, Physics and Chemistry of the Earth, Vol.31, pp.804-813, 2006.
41. Kim, H.K., Jang, T.I., Im, S.J. and Park, S.W., “Estimation of irrigation return flow from paddy fields considering the soil moisture”, Agricultural Water Management, Vol.96, pp.875-882, 2009.
42. Maarten, K., Annekathrin, J., Axel B. and Andreas G., “Integrated modelling of climate, water, soil, agricultural and socio-economic processes: A general introduction of the methodology and some exemplary results from the semi-aridnorth-east of Brazil”, Journal of Hydrology, Vol.328, pp.417-431,2006.
43. Oad, R., Lusk, K. and Podmore, T., “Consumptive use and return flows in urbanlawn water use”, ASCE, Journal of irrigation and drainage Engineering, Vol.123, No. 1, pp. 62-69, 1997.
44. Zulu, G., Masaru, T., Shin-ichi, M., “Characteristics of water reuse and its effects on paddy irrigation system water balance and the Riceland ecosystem,” Agricultural Water Management, Vol.31, pp.269-283 , 1995。
|