博碩士論文 963202062 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:30 、訪客IP:18.218.184.214
姓名 王宇文(Yu-Wen Wang)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 室內隔間對建築物貫流通風影響之實驗研究
(Experimental Study of Wind-driven Cross Ventilation in Partitioned Buildings)
相關論文
★ 定剪力流中二維平板尾流之風洞實驗★ 以大渦紊流模式模擬不同流況對二維方柱尾流之影響
★ 矩形建築物高寬比對其周遭風場影響之研究★ 台灣地區風速機率分佈之研究
★ 邊界層中雙棟並排矩形建築之表面風壓量測★ 排放角度與邊牆效應對浮昇射流影響之實驗研究
★ 低層建築物表面風壓之實驗研究★ 圓柱體形建築物表面風壓之實驗研究
★ 最大熵值理論在紊流剪力流上之應用★ 應用遺傳演算法探討海洋放流管之優化方案
★ 均勻流中圓柱體形建築物表面風壓之風洞實驗★ 大氣與森林之間紊流流場之風洞實驗
★ 以歐氏-拉氏法模擬煙流粒子在建築物尾流區中的擴散★ 以HHT分析法研究陣風風場中建築物之表面風壓
★ 以HHT時頻分析法研究陣風風場中物體所受之風力★ 風吹落物之軌跡預測模式與實驗研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 摘?要
本研究採用理論分析及風洞模型實驗的方式來研究有室內隔間之建築物風壓通風的問題,研究參數包括室內隔間的方式、室內開口的大小、厚度對通風量的影響,通風量和開口的流量係數利用噴嘴流量計來量測。實驗結果發現室內開口的流量係數與損失係數為開口大小的函數,但與雷諾數、內外牆厚度、室外開口大小與位置無關。研究也發現了當迎風面與背風面面積相同時,通風量會最大,
且此通風量會隨室內開口變大而變大。本研究並依據連續方程式和孔口流量公式建立一個預測模式來計算多區間建築物(Multi-room)的風壓通風之通風量,風洞實驗的結果驗證了此預測模式,此模式可供建築設計者未來在評估、規劃建築物自然通風之用。
摘要(英) Abstract
This study uses wind tunnel experiments to investigate wind-driven cross ventilation in partitioned buildings. The discharge coefficients of internal opening were determined by a fan technique. It is found that the discharge coefficient is a function of internal porosity and door angle, but independent of Reynolds number, opening thickness, external porosity and opening location. This study also discovered that the internal discharge coefficient decreases as the internal opening area increases. However, the ventilation rate increases as the internal opening area increases. Based on the experimental results, a predictive model for inlet velocity and internal pressure of multi-room buildings was developed and verified. This model can provide architects to evaluate the ventilation rate and thermal comfort of nature ventilated buildings.
關鍵字(中) ★ 多區間通風模式
★ 流量係數
★ 風洞實驗
★ 貫流通風
關鍵字(英) ★ multi-room model
★ cross ventilation
★ wind tunnel experiment
★ Discharge coefficient
論文目次 Contents
Abstract I
Contents III
Notation IV
Figure captions VI
Table captions VIII
1. Introduction 1
2. Experimental setup 7
3. Results and discussion 10
3.1 Internal discharge coefficient 10
3.2 Resistance coefficient 14
3.3 Internal pressure coefficient 15
3.4 Dimensionless velocity 16
4. Conclusions 18
References 20
Appendix A 23
Appendix B 28
Figures 29
Tables 57
參考文獻 References
[1] D. Etheridge, M. Sandberg, Building Ventilation: Theory and Measurement. John
Wiley and Sons; 1996.
[2] PF. Linden, The Fluid Mechanics of Natural Ventilation, Annual Review of Fluid
Mechanics 31 (1999) 201-238.
[3] P. Heiselberg, E. Bjorn, PV. Nielsen, Characteristics of air flow from open
windows, Building and Environment 36 (2001) 859-869.
[4] A. Mochida, H. Yoshino, T. Takeda, T. Kakegawa, S. Miyauchi, Methods for
controlling airflow in and around a building under cross ventilation to improve
indoor thermal comfort, Journal of Wind Engineering and Industrial Aerodynamics
93 (2005) 437-449.
[5] M. Santamouris, P. Wouters, Building Ventilation: The state of the art, Earthscan;
2006.
[6] M. Santamouris, Natural Ventilation in Buildings: A Design Handbook, edited by F.
Allard, James and James Ltd.; 1998.
[7] Y. Jiang, D. Alexander, R. Jenkins, H. Arthur, Q. Chen, Natural ventilation in
buildings: measurement in a wind tunnel and numerical simulation with large eddy
simulation, Journal of Wind Engineering & Industrial Aerodynamics 91 (2003)
331-353.
[8] G. Evola, V. Popov, Computational analysis of wind driven natural ventilation in
buildings, Energy and Buildings 38 (2006) 491-501.
[9] W.R. Chang, Effect of porous hedge on cross ventilation of a residential building,
Building and Environment, 41 (2006) 549-556.
[10] T.J. Chang, Y.F. Hsieh, H.M. Kao, Numerical investigation of airflow pattern and
particulate matter transport in naturally ventilated multi-room buildings. Indoor Air,
16 (2006) 136-152.
[11] C.H. Hu, M. Ohba, R. Yoshie, CFD modeling of unsteady cross ventilation flows
using LES, Journal of Wind Engineering & Industrial Aerodynamics 96 (2008)
1692-1706.
[12] E. Dascalaki., M. Santamouris, M. Bruant, C.A. Balaras, A. Bossaer, D. Ducarme,
P. Wouters, Modeling large openings with COMIS, Energy and Buildings 30
(1999) 105-115.
[13] H.E. Feustel, COMIS-an international multizone air-flow and contaminant
transport model, Energy and Buildings 30 (1999) 3-18.
[14] Z. Ren, J. Stewart, Simulating air flow and temperature distribution inside
buildings using a modified version of COMIS with sub-zonal divisions, Energy
and Buildings 35 (2003) 257-271.
[15] Y. Zhao, H. Yoshino, H. Okuyama, Evaluation of the COMIS model by comparing
simulation and measurement of airflow and pollutant concentration, Indoor Air 8
(1998) 123-130.
[16] F. Haghighat, A.C. Megri, A comprehensive validation of two airflow models –
COMIS and CONTAM, Indoor Air 6 (1996) 278-288.
[17] G.N. Walton, CONTAM’96 Users Manual, NISTIR 6055, National Institute of
Standards and Technology, USA, 1997.
[18] G.N. Walton, W.S. Dols, CONTAM 2.4 supplemental user guide and program
documentation, NISTIR 7251, National Institute of Standards and Technology
2003.
[19] G. Tan, L. R. Glicksman, Application of integrating multi-zone model with CFD
simulation to natural ventilation prediction, Energy and Buildings 37 (2005)
1049-1057.
[20] F. Haghighat, Y. Li, A.C. Megri, Development and validation of a zonal model –
POMA, Building and Environment 36 (2001) 1039-1047.
[21] L. Wang, Q. Chen, Evaluation of some assumptions used in multizone airflow
network models, Building and Environment 43 (2008) 1671-1677.
[22] P. Heiselberg, M. Sandberg, Evaluation of discharge coefficients for window
openings in wind driven natural ventilation, International Journal of Ventilation 5
(2006) 43-52.
[23] T. Kurabuchi, M. Ohba, T. Endo, Y. Akamine, F. Nakayama, Local dynamic
similarity model of cross-ventilation, Part 1: Theoretical framework, International
Journal of Ventilation 2 (2004) 371-382.
[24] T. Sawachi, K. Narita, N. Kiyota, H. Seto, S. Nishizawa, Y. Ishikawa, Wind
pressure and air flow in a full-scale building model under cross ventilation,
International Journal of Ventilation 2 (2004) 343-357.
[25] R.M. Aynsley, W. Melbourn, B.J. Vickery, Architectural Aerodynamics, Applied
Science Publishers; 1997.
[26] C.R. Chu, Y.H. Chiu, Y.J. Chen, Y.W. Wang, C.P. Chou, Turbulence effects on the
discharge coefficient and mean flow rate of wind-driven cross ventilation. Building
and Environment, 44 (2009) 2064-2072.
[27] J.D. Holmes, Wind Loading of Structures, Spon Press; 2001.
[28] I.E. Idelchik, Handbook of Hydraulic Resistance - 3rd Edition. 1994.
[29] J.W. Axley, D.H. Chung, Well-posed models of porous buildings for macroscopic
ventilation analysis, International Journal of Ventilation 5 (2006) 89-104.
[30] Y.H. Chiu, D.W. Etheridge, External flow effects on the discharge coefficients of
two types of ventilation opening, Journal of Wind Engineering and Industrial
Aerodynamics 95 (2007) 225-252.
[31] ANSI/AMCA 210-99, Laboratory Methods of Testing Fans for Rating, Air
Movement and Control Association International, Inc., Arlington Height, IL,
U.S.A., 1999.
指導教授 朱佳仁(Chia-Ren Chu) 審核日期 2009-7-8
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明