參考文獻 |
[1] G.Adomavicius, A. Tuzhilin, Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions, IEEE Transactions on Knowledge and Data Engineering 17(6) (2005) 734-749.
[2] S. Antonie, A. P. D.Silva, Stochastic judgments in the AHP: The measurement of rank reversal probabilities, Decision Sciences 28(3) (1997) 655.
[3] J. Bartholdi, C. A. Tovey, M. A. Trick, Voting schemes for which it can be difficult to tell who won the election, Social Choice and Welfare 6(2) (1989)157-165.
[4] M. Balabanovic, and Y. Shoham, Fab: Content-based, collaborative recommendation, Communications of the ACM 40(3) (1997) 66-72.
[5] M. M. S. Beg, N. Ahmad, Soft computing techniques for rank aggregation on the World Wide Web, World Wide Web-Internet and Web Information Systems 6(1) (2003) 5-22.
[6] K. Bogart, Preference structures I: Distances between transitive preference relations, Journal of Math Sociology 3 (1973) 49-67.
[7] K. Bogart, Preference Structures II: Distances Between Asymmetric Relations, SIAM Journal of Applied Math 29(2) (1975) 254-265.
[8] J.C. Borda, Memoire sur les elections au scrutin, Histoire de l Academie Royale de Science, 1981, Paris.
[9] J. S. Breese, D. Heckerman, C. Kadi . Empirical analysis of predictive algorithms for collaborative filtering. In: Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence, Madison, 1998, 43-52.
[10] W. Cohen, Learning to order things, The journal of artificial intelligence research, 10 (1999)243.
[11] W. D. Cook, Distance-based and ad hoc consensus models in ordinal preference ranking. European Journal of Operational Research 172(2) (2006) 369-385.
[12] W. D. Cook, B. Golany, M. Kress, M. Penn, T. Raviv, Optimal Allocation of Proposals to Reviewers to Facilitate Effective Ranking, Management Science 51(4) (2005) 655-661.
[13] W. D. Cook, B. Golany, M. Kress, M. Penn, T. Raviv, Creating a Consensus Ranking of Proposals from Reviewer's Partial Ordinal Rankings. Computers & OR 34(4) (2007) 954-965.
[14] W. D. Cook, M. Kress, M. Seiford, L. M., An Axiomatic Approach to Distance on Partial Orders, Revue Automatique, Informatique et Recherche Operationnelle 20(2) (1986) 115-122.
[15] W. D. Cook, M. Kress, L., Seiford, Information and Preference in Partial Orders: A Bimatrix Representation, Psychometrika 51(2) (1986) 197-207.
[16] W. D. Cook, M., Kress, L., Seiford, A general framework for distance-based consensus in ordinal ranking models, European Journal of Operational Research 96 (1996)392-397.
[17] R. Fagin, R.Kumar, D.Sivakumar, Efficient similarity search and classification via rank aggregation. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, San Diego, California: ACM, pp. 301-312, 2003..
[18] B.Golden, The Analytic Hierarchy Process: Applications and Studies. New York NY: Springer, 1989.
[19] J. Gonzalez-Pachon, C. Romero, Aggregation of partial ordinal rankings: an interval goal programming approach. Computers and Operations Research 28(8) (2001) 827-834.
[20] S. Greco, V. Mousseau, R. Slowinski, Ordinal regression revisited: multiple criteria ranking with a set of additive value functions, European Journal of Operational Research (2007), doi:10.1016/j.ejor.2007.08.013.
[21] J. L. Herlocker, , J. A. Konstan, et al., Evaluating collaborative filtering recommender systems, ACM Transactions on Information Systems, 22(1):(2004)5-53.
[22] D. S. Hochbaum, A. Levin, Methodologies and algorithms for group-rankings decision, Management Science 52(9) (2006) 1394-1408.
[23] T. Hofmann, Latent semantic models for collaborative filtering. ACM Transactions on Information Systems, 22(1) (2004),89-115.
[24] T. Kamishima, Nantonac collaborative filtering: Recommendation based on order responses, In Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining, Washington, DC, USA, 2003, pp. 583–588.
[25] J. G. Kemeny, L. J. Snell, Preference Ranking: An Axiomatic Approach, In: Proceedings of Mathematical Models in the Social Science (1962) 9–23.
[26] M. Kendall, Rank Correlation Methods, third ed., Hafner, New York, 1955.
[27] H. S. Lewis, T. W. Butler, An interactive framework for multi-person, multiobjective decisions, Decision Sciences 24(1) (1993).
[28] G. Linden, B. Smith, J. York, Amazon.com recommendation Item-to-item collaborative filtering, IEEE Internet Computing, 7(1), (2003)76-80.
[29] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom ,J. Riedl, GroupLens: An open architecture for collaborative filtering of netnews.In: Proceedings of ACM Conference on Computer-Supported Cooperative Work, 1994,175-186.
[30] F. D. Robert, H. F. Ernest, Group decision support with the analytic hierarchy process. Decision Support System 8(2) (1992) 99-124.
[31] T. L. Saaty, Rank Generation, Preservation, and Reversal in the Analytic Hierarchy Decision Process, Decision Sciences 18(2) (1987) 157.
[32] S.Saint, J. R.Lawson, Rules for Reaching Consensus: A Modern Approach to Decision Making, Pfeiffer & Company (1994).
[33] B.Sarwar, G. Karypis, J. Konstan, J. Riedl, Item-based collaborative filtering recommendation algorithms, In: Proceedings of the 10th international conference on World Wide Web, 2001, 285-295.
[34] R. Srikant, R. Agrawal, Mining sequential patterns: Generalizations and performance improvements. In: Proceedings of the Fifth Int'l Conference on Extending Database Technology (EDBT). Avignon, France, (1996).
[35] O. S. Vaidya, S.Kumar, Analytic hierarchy process: An overview of applications. European Journal of Operational Research 169(1) (2006) 1-29. |