參考文獻 |
[1] Armbruster, B., Smith C., Park, K., 2007. A packet filter placement problem with application to defense against spoofed denial of service attacks. European Journal of Operational Research, 176(2), 1283-1292.
[2] Arsenault, D., Sood, A., Huang, Y., 2007. Secure, Resilient Computing Clusters: Self-Cleansing Intrusion Tolerance with Hardware Enforced Security. In Proceedings of 2nd International Conference on Availability, Reliability and Security, 343-350.
[3] Avizienis, A., Laprie, J.C., Randell, B., Landwehr, C., 2004. Basic concepts and taxonomy of dependable and secure computing. IEEE Transactions on Dependable and Secure Computing, 1(1), 11–33.
[4] Baldoni, R., Helary, J., Raynal, M., Tanguy, L., 2003. Consensus in Byzantine asynchronous systems. Journal of Discrete Algorithms, 1 (2), 185–210.
[5] Cai, M., Hwang, K., Kwok, Y., Song, S., & Chen, Y., 2005. Collaborative Internet worm containment. IEEE Security and Privacy Magazine, 3(3), 25–33.
[6] Castro, M., Liskov, B. 2002. Practical Byzantine Fault Tolerance and Proactive Recovery. ACM Transactions on Computer Systems, 20 (4), 398-461.
[7] Chen, X., & Heidemann, J., 2004. Detecting Early Worm Propagation through Packet Matching. Technical Report ISI-TR-2004-585, USC/ Information Sciences Institute.
http://www.isi.edu/~johnh/PAPERS/Chen04a.pdf
[Accessed May, 2009]
[8] Chou, H.C, Cheng, C.H. & Chang, J.R., 2007. Extracting drug utilization knowledge using self-organizing map and rough set theory. Expert Systems with Applications, 33(2), 499-508.
[9] Correia, M., Neves, N.F., Lung, L.C., Verissimo, P., 2007. Worm-IT – A wormhole-based intrusion-tolerant group communication system. Journal of Systems and Software, 80(2007), 178-197.
[10] Crandall, J. R., Su, Z., Wu, S. F., 2005. On deriving unknown vulnerabilities from zero-day polymorphic and metamorphic worm exploits. In Proceedings of the 12th ACM Conference on Computer and Communications Security, VA, USA, 235-248.
[11] Deswarte, Y., Fabre, J. C., Fraga, J. D., Laprie, J. C., & Powell, D. 1985. The SATURNE project. A fault- and intrusion-tolerant distributed system. IEEE Computer. Arch. Tech. Comm. Newslett., 4–22.
[12] Deswarte, Y., Powell, D., 2006. Internet Security: An Intrusion-Tolerance Approach. In Proceedings of the IEEE, 94(2)., 432-441.
[13] Djemaiel, Y., Rekhis, S., Boudriga, N., 2007. Intrusion detection and Tolerance: A global scheme. International Journal of Communication Systems, 21 (2008) 211-230.
[14] Dobson, J. E., Randell, B., 1986. Building reliable secure systems out of unreliable insecure components. IEEE Symp. Security and Privacy, Oakland, CA, USA.
[15] Dunlap, G., King, S., Cinar, S., Basrai, M., Chen, P., 2002. ReVirt: Enabling Intrusion Analysis through Virtual-Machine Logging and Replay. In Proceedings of the 2002 Symposium on OSDI, 452-467.
[16] eEye Digital Security, "SQL Worm Analysis",
http://www.eeye.comhtml/Research/Advisories/AL20020522.htm050
[Accessed May, 2009].
[17] Fraga, J.S., Powell, D., 1985. A fault- and intrusion-tolerant file system. In Proceedings of the 3rd International Conference on Computer Security. 203–218.
[18] Goldberg, D. E., 1989. Genetic algorithms in search. Optimization and Machine Learning. Addison-Wesley, Reading. MA, U.S.A.
[19] GT-ITM. 2003. Modeling Topology of Large Internetworks. University of Georgia Tech.
http://www.cc.gatech.edu/projects/gtitm/
[Accessed May, 2009].
[20] Grzymala-Busse, J. W. 1988. Knowledge acquisition under uncertainty: a rough set approach. Journal of Intelligent Robotic Systems, 1, 3–16.
[21] Haridasan, M., Renesse, R., 2007. SecureStream: An intrusion-tolerant protocol for live-streaming dissemination. Computer Communications 31 (2008) 563–575.
[22] Hirano, S., Sun, X., Tsumoto, S. 2002. Dealing with multiple types of expert knowledge in medical image segmentation: A rough sets style approach. In Proceedings of the 2002 IEEE international conference on fuzzy system, Vol. 2, pp. 884–889.
[23] Im, E.G., Seo, J.T., Kim, D.S., Song, Y.H., Park, Y.S., 2006. Hybrid Modeling for Large-Scale Worm Propagation Simulations. Lecture Notes in Computer Science, Volume 3975, 572-577.
[24] Jiang, X., Xu, D., 2004. Collapsar: A VM-Based Architecture for Network Attack Detention Center. In Proceedings of 13th USENIX Security Symposium (Security'04). San Diego, CA. USA.
[25] Johansen, H., Allavena, A., Renesse, R., 2006. Fireflies: Scalable support for intrusion tolerant network overlays. In Proceedings of the EuroSys conference, Volume 40, 3-13.
[26] Joseph, M. K., Avizienis, A. 1988. A fault tolerance approach to computer viruses. In Proceedings of IEEE Symposium. Security and Privacy. 52–58.
[27] Junqueira, F., Bhagwan, R., Hevia, A., Marzullo, K., Savage, S., M., G., 2005. Voelker. Surviving Internet Catastrophes. In Proceedings of the USENIX Annual Technical Conference. 1076-1098.
[28] Just, J., Reynolds, J., Clough, L., Danforth, M., Levitt, K., Maglich, R., Rowe, J., 2002. Learning Unknown Attacks - A Start. In Proceedings of the 5th International Symposium on Recent Advances in Intrusion Detection, Zurich, Switzerland. 254-260.
[29] Kang, S.M., Song, I.S., Lee, Y., Kwon, T.G., 2006. Design and implementation of a multi-gigabit intrusion and virus/worm detection system. In Proceedings of the International Conference on Communications (ICC’06), 735-749.
[30] Khoo, L. P., Tor, S. B., & Li, J. R., 2001. A rough set approach to the ordering of basic events in a fault tree for fault diagnosis. International Journal of Advanced Manufacturing Technology, 17, 769–794.
[31] Kim, Y., Lau, W. C., Chuah, M. C., Chao, H. J., 2006. PacketScore: A Statistics-Based Packet Filtering Scheme against Distributed Denial-of-Service Attacks, IEEE Transactions on Dependable and Secure Computing, 3(2), 141-155.
[32] Kruegel, C., Kirda, E., 2005. Polymorphic worm detection using structural information of executables. Lecture Notes in Computer Science, Volume 3858, 207-226.
[33] Laprie, J.C., 1985. Dependable computing and fault tolerance: concepts and terminology. In Proceedings of the 15th IEEE Int. Symp. Fault Tolerant Computing (FTCS-15), 2–11.
[34] Lee, K., Kim, J., Kwon, K. H., Han, Y., & Kim, S., 2007. DDoS attack detection method using cluster analysis, Expert Systems with Applications. 34(3), 1659-1665.
[35] Li, H.C., Clement, A., Wong, E.L., Napper, J., Roy, I., Alvisi, L., Dahlin, M., 2006. BAR Gossip. In Proceedings of the 7th Symposium on Operating Systems Design and Implementation (OSDI). Seattle, WA. USA, 359-364.
[36] Li, Z., Sanghi, M., Chen, Y., Kao, M.Y., & Chavez, B., 2006. Hamsa: Fast Signature Generation for Zero-day Polymorphic Worms with Provable Attack. In Proceedings of the IEEE Symposium on Security and Privacy, 32-47.
[37] Liang, Z., Sekar, R., 2005. Fast and automated generation of attack signatures: A basis for building self-protecting servers. In Proceedings of the 12th ACM conference on Computer and communications security, 213-222.
[38] Liao, Y., & Vemuri, R., 2001. Use of K-nearest neighbor classifier for intrusion detection. Computers and Security, 21(5), 439–448.
[39] Mahoney, M., & Chan, P.K., 2003. An Analysis of the 1999 DARPA/Lincoln Laboratory Evaluation Data for Network Anomaly Detection. Recent Advances in Intrusion Detection, 220-237.
[40] Mirage Network, 2003. Combating Rapidly Propagating Threats from the Internal Network.
http://www.appliednetsec.com/productresources/mirage/Combating RPTs from the Internal Network 10pages.pdf
[Accessed May, 2009].
[41] Mohammed, H., Mohammad, Z., 2007. Intrusion detection aware component-based systems: A specification-based framework. Journal of Systems and Software, 80(5), 700-710.
[42] Nachenberg, C., 1997. Computer virus-antivirus coevolution. Communications of the ACM, 40(1), 46–51.
[43] Newsome, J., & Song, D., 2005. Dynamic taint analysis for automatic detection, analysis, and signature generation of exploits on commodity software. In Proceedings of the Network and Distributed System Security Symposium, 174-198.
[44] Newsome, J., Karp, B., & Song, D., 2005. Polygraph: Automatically generating signatures for polymorphic worms. Proceedings of the Security and Privacy Symposium, 226- 241.
[45] Nojiri, D., Rowe, J., & Levitt, K., 2003. Cooperative Response Strategies for Large Scale Attack Mitigation. Proceedings of the 3rd DARPA Information Survivability Conference and Exposition (DISCEX), 293–302.
[46] Network Simulation 2 software package.
http://www.isi.edu/nsnam/ns/
[Accessed May, 2009].
[47] Oorschot, P.C., Robert, J.M., & Martin, M.V., 2006. A monitoring system for detecting repeated packets with applications to computer worms. Internet Journal of Information Security, 5(3), 186–199.
[48] Organically Assured and Survivable Information Systems
http://www.tolerantsystems.org/
[Accessed May, 2009].
[49] Park, K., Lee, H., 2001. On the effectiveness of route-based packet filtering for distributed DoS attack prevention in power-law internets. In Proceedings of ACM SIGCOMM '01, 15-26.
[50] Pawlak, Z. 1996. Why rough sets? In Proceedings of the 5th IEEE International Conference on Fuzzy Systems, Volume 2, New Jersey, USA. 738–743.
[51] Roesch., M., 2001. Snort: The lightweight network intrusion detection system. http://www.snort.org/
[Accessed May, 2009].
[52] Russell, R. 1999. Linux iptables HOWTO.
http://www.linuxguruz.com/iptables/howto
[Accessed May, 2009].
[53] Shannon, C., Moore, D., 2004. The spread of the Witty worm. http://www.caida.org/research/security/Witty/
[Accessed May, 2009].
[54] Shyng, J. Y., Wang, F. K., Tzeng, G. H., & Wu, K.S., 2007. Rough Set Theory in analyzing the attributes of combination values for the insurance market. Expert Systems with Applications, 32(1), 56–64.
[55] Singh, S., Estan, C., Varghese, G., & Savage, S., 2003. The earlybird system for real-time detection of unknown worms. Technical Report CS-2003-0761, University of California,
http://www.cs.unc.edu/~jeffay/courses/nidsS05/signatures/savage-earlybird03.pdf
[Accessed May, 2009].
[56] Staniford, S., Paxson, V., & Weaver, N., 2002. How to own the Internet in your spare time. In Proceedings of the 11th USENIX Security Symposium. 374-402.
[57] Stroud, R., Welch, I., Warne, J., Ryan, P., 2004. A qualitative analysis of the intrusion-tolerant capabilities of the MAFTIA architecture", In Proceedings of the Dependable Systems and Networks Conference (DSN), Florence, Italy.
[58] Symantec Corp., 2002. FreeBSD scalper worm.
http://www.symantec.com/security_response/writeup.jsp?docid=2002-062814-5031-99&tabid=2
[Accessed May, 2009].
[59] Syswerda, G., 1989. Uniform crossover in genetic algorithms. In Proceedings of the 3rd International Conference on Genetic Algorithms, Fairfax, VA, U.S.A. 2-9.
[60] Tseng, C. T., Liao, C.J., 2008. A discrete particle swarm optimization for lot-streaming flow shop scheduling problem. European Journal of Operational Research, 191(2), 360-373.
[61] Verissimo P,Neves N F,Correia M. 2003. Intrusion-tolerant architectures: concepts and design architecting dependable systems. Lecture Notes in Computer Science, Springer Verlag, Volume 2677, 3-36.
https://eprints.kfupm.edu.sa/46942/1/46942.pdf
[Accessed May, 2009]
[62] VMWare Inc., 2009.
http://www.VMWare.com/
[Accessed May, 2009]
[63] VmCOM Introduction, 2009.
http://communities.vmware.com/community/developer/legacyapi
[Accessed May, 2009]
[64] Wang, H., Guo, C., & Simon, D., & Zugenmaier, A., 2004. Shield: Vulnerability-driven network filters for preventing known vulnerability exploits. In Proceedings of the ACM SIGCOMM '04, Portland, OR, 1291-1309.
[65] Wang, W., Luo, D. S., & Zhang, J., 2006. Detect Polymorphic Worms Based On Semantic Signature And Data Mining. In Proceedings of the 1st Communications and Networking Conference. China.
[66] Wang, Y., Behera, S., Wong, J., Helmer, G., Honavar, V., Miller, L., Slagell, M., Lutz, R., 2006. Towards the automatic generation of mobile agents for distributed intrusion detection systems. Journal of Systems & Software, 79(1), 1-14.
[67] Wehner, S., 2007. Analyzing Worms and Network Traffic using Compression, Journal of Computer Security, 15(3), 303-320.
[68] Wuu, L.C., Hung, C.H., Chen, S.F., 2007. Building intrusion pattern miner for Snort network intrusion detection system. Journal of Systems and Software , 80 (10), 1699-1715.
[69] Xin, Y., Fang, B. X., Yun, X. C., & Chen, H. Y., 2005. Worm Detection in Large Scale Network by Traffic. In Proceedings of the 6th International Conference on Parallel and Distributed Computing Applications and Technologies, China, 270- 273.
[70] Yang, H.H., Liu, T.C. & Lin, Y.T., 2007. Applying rough sets to prevent customer complaints for IC packaging foundry. Expert Systems with Applications, 32(1), 151–156.
[71] Yang, S., Song, J., Rajamani, H., Cho, T., Zhang, Y., Mooney, R. Fast and Effective Worm Fingerprinting via Machine Learning. In Proceedings of IEEE International Conference on Autonomic Computing. 311 - 313
[72] You, Y., Zulkernine, M., Haque, A., 2008. A Distributed Defense Framework for Flooding-Based DDoS Attacks. In Proceedings of 3rd International Conference on Availability, Reliability and Security. 245 - 252
[73] Zadeh, L. A., 1965. Fuzzy sets. Information and Control, Volume 8, 338-353.
[74] Znati, T., Amadei, J., Pazehoski, D.R., Sweeny, S., 2006. Design and Analysis of an Adaptive, Global Strategy for Detecting and Mitigating Distributed DoS Attacks in GRID Environments. In Proceedings of the 39th annual Symposium on Simulation. 2-9.
[75] Zou, C. C., Gao, L., Gong, W., & Towsley, D., 2003. Monitoring and early warning for internet worms. Tech. Rep. TR-CSE-03-01. Univ. of Massachusetts.
http://www-unix.ecs.umass.edu/~gong/papers/monitoringEarlyWarning.pdf
[Accessed May, 2009]
[76] Zou, C. C., Gong, W., & Towsley, D., 2002. Code red worm propagation modeling and analysis. In Proceedings of the 9th ACM conference on Computer and communications security. Washington, DC, USA, 138–147.
[77] Zulkernine, M., Seviora, R., 2005. Towards automatic monitoring of component-based software systems. Journal of Systems and Software. 74(1), 15–24.
|