博碩士論文 944203001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:83 、訪客IP:3.15.5.186
姓名 謝依潔(I-Chien Hsieh)  查詢紙本館藏   畢業系所 資訊管理學系
論文名稱 供應鏈滾動預測與訂單策略之模擬研究
(A Simulation on Supply Chain Rolling Forecast and Inventory Strategy Research)
相關論文
★ 製藥業的成本會計評估研究─ 一個ABC成本制度的應用★ 一個保險業的資料採擷應用--業務員的薪酬制度分析
★ 農漁產品電子化交易中分類分級管理之研究★ 應用類神經網路建構壽險核保決策支援之研究
★ 企業導入ERP之關鍵成功因素-個案研究★ 體外診斷醫療器材滿足CE及GMP驗證要求之個案研
★ 企業資訊系統委外研究-以個案銀行為例★ DRAM月平均價格變動分析
★ 定期航運產業運價及運送時間對經營績效影響之研究-以某外商海運公司在台灣經營為例★ 以交通儲值卡作為電子支付工具的營運模式及可行性分析
★ 軟體公司能力成熟度評估★ 加速台灣海關的通關便捷化-提升行動化服務的解決方案
★ 以均勻度係數為預測晶圓良率指標之可行性分析-以國內某DRAM廠為例★ 某公司資訊部門變革失敗之探討
★ 資訊部門導入ITIL 管理機制之現況分析─ 以企業導入ITIL 服務支援為例★ 導入WCO SAFE 優質企業之可行性分析–以A航空公司為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究觀察到目前台灣許多產業供應商交貨時間被高度壓縮,因此必須倚賴滾動預測的方式來進行事先生產或備料。但在目前學界的研究中,卻缺少對滾動預測的研究。這引發本研究針對滾動預測,利用電腦模擬方法來進行這項實驗研究。首先,本研究先對滾動預測現象及案例進行探討。接著,本研究建立一個具有單一供應商及單一零售商的二階層供應鏈。研究假設其顧客訂購要求之交期較上游供應商前置時間短,經由預測訂單的資訊分享,且考慮本身成本最小化的策略。這主要是來探討前置時間、安全庫存以及存缺貨成本比例的訂貨調整策略對供應鏈績效的影響。各種實驗的情境包括預測高估、低估及一般無偏差的情境,配合誤差平均、誤差平均標準差以及誤差平方根三種訂貨調整策略。本研究結論為,在不同的預測誤差或預測偏誤下,廠商如能選擇合適的訂貨策略以及縮短上游廠商的前置時間,加上對產業別的調整,可為提高供應鏈績效的最好方法。
摘要(英) Based on the current phenomena of the Taiwan industries, it is apparent that the order delivery time has been severely compressed to meet customer demand. A straight forward solution may end up with serious inventory problems. In order to solve the problem, “rolling forecast” has been widely employed to cope with the problem, such that materials can be prepared in advance. However, there is a dearth in academic research on this issue. This research started out with an investigation on the issue of rolling forecast applications in the Taiwan industry. Subsequently, the computer simulation method was used to study the problem on hand. A two echelons supply chain with one focal supplier and one customer, where deliver time is shorter than upstream supplier lead time was assumed. Through order information sharing and minimizing total inventory cost, the simulation experiments investigated the impact of safety stock, lead time and different inventory and out of stock cost proportion.
Many scenarios were included in the simulation study, including forecast bias forecast error, out of stock penalty, and inventory replenishment strategies. In conclusion, we found out that in different forecast error and forecast bias settings, the companies have to choose adaptable strategy and shorten the upstream lead time. Moreover, different industries have to adjust their replenishment strategies to improve their supply chain performance.
關鍵字(中) ★ 預測偏誤
★ 預測誤差
★ 滾動預測
★ 供應鏈
關鍵字(英) ★ Forecast Bias.
★ Forecast Error
★ Rolling Forecast
★ Supply Chain
論文目次 中文摘要 II
ABSTRACT V
TABLES IX
FIGURES X
1. 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 5
1.3 研究問題 6
1.4 研究流程 6
2. 文獻探討 8
2.1 存貨管理 8
2.2 滾動預測 11
2.3 預測誤差 16
3.研究模型建立與模擬 18
3.1 模擬研究方法 18
3.2 基本模型建構 18
3.3系統假設 19
3.4滾動式預測需求計算公式 20
3.5 滾動式預測需求計算範例 22
3.6 實驗設計 25
3.7 訂單調整變數 29
3.8 預測方法 31
3.9 研究情境及實驗模擬 37
4.模擬結果與分析 42
4.1階段一實驗_安全庫存實驗結果 42
4. 2階段二實驗_訂單調整策略實驗結果 46
4.3實驗結果分析 55
5結論與未來研究方向 56
5.1結論 56
5.2管理意涵 57
5.3學術意涵與未來研究方向 59
5.4研究限制 60
REFERENCES 61
參考文獻 中文部份
1. 林則孟 (2006),生產計劃與管理,華泰文化事業股份有限公司:台北市。
2. 張怡筠 (2006),「CPFR中滾動式預測的關鍵因子探討」,國立清華大學資訊系統與應用研究所碩士論文。
3. 許勝雄 (2003),「產業發展的前景與挑戰篇」,資政顧問言論專欄,存取日期:2007/6/11。
4. 郭瑞祥,蔣明晃 ,陳亞男,劉基全 (2004),「多廠生產規劃之供應鏈決策支援模式」, 臺灣大學管理論叢,15(1), pp. 49-74。
5. 陳麗玉 (2000),「全球化供應鏈管理績效評估與探討」,國立政治大學資訊管理學系碩士論文。
6. 詹子嫻 (2007),「台北從B2B到CPFR─聯合通商協助企業掌握變動、快速反應」,Hhttp://app.digitimes.com.tw/H,存取日期:2007/6/11。
7. 李富民,洪瑞文 (2001),「智慧型供應鏈管理系統」,第二屆電子化企業經營管理理論暨實務研討會, pp. 155-165。
8. 苗豐強 (2004),98/2-神達維他命計畫, 天下遠見出版股份有限公司:臺北市。
英文部分
1. Aviv, Y. (2001), “The Effect of Collaborative Forecasting on Supply Chain Performance,” Management Science, 47(10), pp. 1326-1343.
2. Biggs, J., and Campion, W. (1982), “The Effect and Cost of Forecast Error Bias for Multiple-Stage Production-Inventory Systems,” Decision Sciences, 13(4), pp. 570-584.
3. Brown, L. K., Inman, R. A., and Calloway, A. J. (2001), “Measuring the Effects of Inventory Inaccuracy in MRP Inventory and Delivery Performance,” Production Planning & Control, 12(1), pp. 46-57.
4. Changkyu, P. (2007), “An Analysis of the Lead Time Demand Distribution Derivation in Stochastic Inventory Systems,” International Journal of Production Economic, 105(1), pp. 263-272.
5. Chopra, S., and Meindl, P. (2001), Supply Chain Management: Strategy, Planning, and Operation, Prentice Hall: Upper Saddle River, NJ.
6. Flaherty, M.T. (1996), Global Operations Management, McGraw-Hill.
7. Fleisch, E., and Tellkamp, C. (2005), “Inventory Inaccuracy and Supply Chain Performance: A Simulation Study of A Retail Supply Chain,” International Journal of Production Economics, 95(3), 2005, pp. 373-385.
8. Al-Zubaidi, H., and Tyler, D. (2004), “A Simulation Model of Quick Response Replenishment of Seasonal Clothing,” International Journal of Retail & Distribution Management, 32(6), pp. 320-327.
9. Holweg, M., Disney, S. M., Hines, P., and Naim, M. M. (2005), “Towards Responsive Vehicle Supply: A Simulation-Based Investigation into Automotive Scheduling Systems,” Journal of Operations Management, 23(5), pp. 507.
10. i2 Technologies US, Inc. (2002), “Reaping The Benefits of A Comprehensive Approach to Supply Chain Management at Infineon Technologies,” I2 Solution, Hhttp://www.i2.com/assets/pdf/606D0E94-BDD4-4EAC-A920901286A8991B.pdfH, Accessed Date: 2007/6/11.
11. Jeunet, J. (2006), “Demand Forecast Accuracy and Performance of Inventory Policies under Multi-Level Rolling Schedule Environments,” International Journal of Production Economics, 103(1), pp. 401-419.
12. Kim, C., Jun, J., Baek, J., Smith, R., and Kim, Y. (2005), “Adaptive Inventory Control Models for Supply Chain Management,” International Journal of Advanced Manufacturing Technology, 26(9), pp. 1184-1192.
13. Lucking-Reiley, D., and Spulber, D. F. (2001), “Business-to-Business Electronic Commerce,” Journal of Economic Perspectives, 15(1), pp. 55-68.
14. Marilyn, M. H., Lawrence P. E., and Sharon C. (2000), “Supply Chain Forecasting – Collaborative Forecasting Supports Supply Chain Management,” Business Process Management Journal, 6(5), pp. 392-407.
15. Chockalingam, M. (2003), “Forecast Accuracy and Safety Stock Strategies,”DemandPlanning.Net, Hhttp://demandplanning.net/documents/dmdaccuracywebVersions.pdfH, Accessed Date: 2007/6/11
16. Martinez, J. C., and Ioannou, P. G. (1999), “General-Purpose Systems for Effective Construction Simulation,” Journal of Construction Engineering and Management, 125(4), pp. 265-276.
17. Mason, J. R., and Towill, D. R. (1999), “Total Cycle Time Compression and the Agile Supply Chain,” International Journal of Production Economics, 62(1), pp. 61-73.
18. McCarthy, T. M., and Golicic, S.L. (2002), “Implementing Collaborative Forecasting to Improve Supply Chain Performance,” International Journal of Physical Distribution & Logistics Management, 32(6), pp. 431-454.
19. Morash, E. A. (2001), “Supply Chain Strategies, Capabilities and Performance,” Transportation Journal, 41(1), pp. 37-54.
20. Nordhaus, W.D. (1987), “Forecasting Efficiency: Concepts and Applications,” The Review of Economics and Statistics, 69(4), pp. 667-674.
21. Perry, M., and Sohal, A. S. (2001), “Effective Quick Response Practices in A Supply Chain Partnership – An Australian Case Study,” International Journal of Operations & Production Management, 21(5), pp. 840-854.
22. Riddalls, C. E., Bennett, S., and Tipi, N. S., (2000), “Modeling the Dynamics of Supply Chains,” International Journal of Systems Science, 31(8), pp. 969-976.
23. Riddalls, C. (2000), “Modeling the Dynamics of Supply Chains,” International Journal of Systems Science, 31(8), pp. 969-976.
24. Silver, E., and Zufferey, N. (2005), “Inventory Control of Raw Materials under Stochastic and Seasonal Lead Times,” International Journal of Production Research, 43(24), pp. 5161-5179.
25. Simatupang, T.M., Sandroto, I.V., and Lubis, S. B. H. (2004), “Case Study Supply Chain Coordination in A Fashion Firm,” Supply Chain Management: An International Journal, 9(3), pp. 256-268.
26. Simatupang, T.M., Wright, A. C., and Sridharan, R. (2002), “The Knowledge of Coordination for Supply Chain Integration,” Business Process Management Journal, 8(3), pp. 289-308.
27. Simchi-Levi, D., Kaminsky, P., and Simchi-Levi, E. (2003a), Designing and Managing the Supply Chain: Concepts, Strategies, and Case Studies, McGraw-Hill: Irwin.
28. Simchi-Levi, E., Kaminsky, P., and Simchi-Levi, D. (2003b), Managing the Supply Chain: The Definitive Guide for the Business Professional. McGraw-Hill Professional.
29. Swaminathan, J. M., Smith, S. F., and Sadeh, N. M. (1998), “Modeling Supply Chain Dynamics: A Multiagent Approach,” Decision Sciences, 29(3), pp. 607-632.
30. Zhao, X. D., and Xie, J. X.(2002), “Forecasting Errors and The Value of Information Sharing in A Supply Chain,” International Journal of Production Research, 40(2), pp. 311-335.
指導教授 范錚強(Cheng-Kiang Farn) 審核日期 2007-7-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明