博碩士論文 963202083 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:27 、訪客IP:3.138.170.67
姓名 賴哲儇(Jhe-syuan Lai)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 高光譜影像立方體於特徵空間之三維紋理計算
(Three Dimensional Texture Computation in Feature Space for Hyperspectral Image Cubes)
相關論文
★ 三維房屋模型實景紋理影像製作與敷貼之研究★ 紋理輔助高解析度衛星影像分析應用於偵測入侵性植物分布之研究
★ 利用高光譜影像偵測外來植物-以恆春地區銀合歡為例★ 以視訊影像進行三維房屋模型實景紋理敷貼之研究
★ 區塊式Level of Detail地景視覺模擬之研究★ 高光譜影像立方體紋理特徵之三維計算
★ 漸變式多重解析度於大型地景視覺模擬之應用★ 區塊式LOD網格細化於大型地形視覺模擬之應用
★ 多層次精緻度三維房屋模型之建置★ 影像修補技術於牆面紋理影像遮蔽去除之應用
★ 結合遙測影像與GIS資料以資料挖掘 技術進行崩塌地辨識-以石門水庫集水區為例★ 利用近景影像提高三維建物模型之細緻化等級
★ 以地面及空載光達點雲重建複雜物三維模型★ 高精緻度房屋模型結合蟻群演算法於室內最佳路徑選擇之應用
★ 二次微分法於空載全波形光達之特徵萃取與地物分類★ 雲線擬合於全波形光達之特徵萃取與地物分類
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 遙測影像中的特徵大部分呈現不規則及複雜型態,紋理分析能夠考慮鄰近像元間的關係,對地物辨識度能達到不錯的成果,因此是遙測影像分析的重要方法。遙測影像的紋理分析,主要利用以統計法為基礎的灰階共生矩陣萃取特徵,提高分類時地物的識別力。傳統的灰階共生矩陣主要以二維形式產生,而高光譜影像在特徵空間觀點中,已含有volumetric data的特性,故有三維紋理計算的可行性。
過去有研究將傳統的灰階共生矩陣計算拓展成三維形式,且證實能提升分類精度。然而,灰階共生矩陣三維計算仍是二階統計。為了符合真正三維紋理特徵萃取的本質,本研究提出灰階共生張量場的概念,記錄三個像元的灰階出現頻率,並進行三階統計指標運算。
在紋理分析計算因子中,視窗(核)尺寸對分類成果佔有極大的影響。利用半變異元分析決定視窗尺寸,有一定程度的參考價值與不錯的成果。但是高光譜影像立方體其中一個維度屬於光譜資訊而非空間距離,若以空間變異為導向的方式決定光譜方向的視窗尺寸,可能產生偏差的成果。針對此一問題,本文利用光譜分離度分析,藉此求得最能區別各類別組的波長取樣間距,做為三維紋理計算時光譜方向的視窗尺寸。
由於本研究以特徵空間的觀點,視高光譜影像為volumetric data,使得三維紋理計算有其可行性。因此本文先利用真實volumetric data的磁振造影資料萃取三維紋理特徵,進行研究方法的初步驗證,再以高光譜影像立方體測試。研究成果顯示,灰階共生張量場於磁振造影如預期可增進分類精度。而在高光譜影像立方體的分析,以半變異元分析決定空間的視窗尺寸,配合分離度分析訂定光譜方向的視窗大小,可產生較佳的三維紋理計算;而灰階共生張量場在多數的統計指標也能有效地提升特徵萃取與地物分類的成果。
摘要(英) The characteristics of remote sensing imagery exhibit a majority of irregular and complex patterns. Because texture analysis can achieve good results in extracting spatial features from complex images by considering the relationship among adjacent pixels, it is an important method in remote sensing image analysis. Texture analysis of remote sensing imagery mainly uses statistics-based gray level co-occurrence matrix (GLCM) to extract features and improve the classification results. The traditional GLCM is in two-dimensional (2D) form. Because hyperspectral imagery in the feature space has the characteristic of volumetric data, it has a great potential for three-dimensional (3D) texture analysis.
Previous studies have extended the computation of traditional GLCM to a 3D form, and performed better in classification. However, the core of 3D computation of GLCM was still in a 2D matrix. To truly explore volumetric texture characteristics, this study further extended texture matrix to a tensor field (Gray Level Co-occurrence Tensor Field, GLCTF) that uses three voxels to extract subtle features from image cubes, and utilizes third order statistical computation.
For classification applications, the kernel size for texture computation has a significant impact to the results. For 3D texture computation, kernel size can be determined effectively with semi-variance analysis in the spatial domain. However, in a hyperspectral image cube, one of the dimensions is spectral. Therefore, semi-variance analysis might yield improper kernel size in this dimension. To address this issue, this study developed an algorithm based on separability measures to identity appropriate kernel size in the spectral dimension for 3D texture computation.
The developed algorithms were applied to 3D texture computation of Magnetic Resonance Images (MRI), whose dimensions are all spatial, to test its validity. Experimental results demonstrate that GLCTF performs better as expected in real volumetric datasets. Consequently, the method was further extended to extract subtle features from hyperspectral image cubes. Evaluations of the classification results indicate that semi-variance analysis and separability measures can determine more appropriate kernel sizes for 3D texture computation and GLCTF in most indexes has better classification results in the test cases.
關鍵字(中) ★ 紋理分析
★ 灰階共生矩陣
★ 灰階共生張量場
★ 半變異元分析
★ 光譜分離度分析
關鍵字(英) ★ Texture Analysis
★ GLCM
★ GLCTF
★ Semi-Variance Analysis
★ Separability Measures
論文目次 摘要 I
ABSTRACT III
謝誌 V
目錄 VI
圖目錄 VIII
表目錄 XIV
第一章 前言 1
1-1 研究背景 1
1-2 文獻回顧 4
1-3 研究動機與目的 6
第二章 研究方法 8
2-1 灰階共生矩陣二維計算 8
2-1-1建立灰階共生矩陣 9
2-1-2 量化灰階共生矩陣與產生紋理影像 11
2-1-3 二維灰階共生矩陣影響因子 13
2-2 灰階共生矩陣三維計算 18
2-3 灰階共生張量場計算 21
2-4半變異元分析 24
2-5分離度分析 28
第三章 MRI案例驗證 32
3-1資料介紹 34
3-2 紋理計算與成果比較 36
第四章 高光譜影像測試 41
4-1 ISIS案例 42
4-1-1 資料介紹 42
4-1-2 視窗尺寸計算 46
4-1-3 紋理計算與成果比較 62
4-2 Hyperion案例 66
4-2-1 資料介紹 66
4-2-2 第一組資料之視窗尺寸計算 69
4-2-3 第一組資料之紋理計算與成果比較 90
4-2-4 第二組資料之視窗尺寸計算 93
第五章 結論與建議 99
參考文獻 102
附錄 107
參考文獻 林恩楷,2005,利用高光譜影像偵測外來植物-以恆春地區銀合歡為例,碩士論文,國立中央大學土木工程研究所。
周明中,2005,紋理輔助高解析度衛星影像分析應用於偵測入侵性植物分布之研究,碩士論文,國立中央大學土木工程研究所。
紀萬偉,2007,無參數加權特徵萃取對遙測及醫學影像目標偵測的應用,碩士論文,國立中央大學資訊工程研究所。
張鈞凱,2007,高光譜影像立方體紋理特徵之三維計算,碩士論文,國立中央大學土木工程研究所。
Akono, A., Tonyé, E., Nyoungui, A. N., and Rudant, J.-P., 2003. Nouvelle méthodologie d'évaluation des paramètres de texture d'ordre trois, International Journal of Remote Sensing, Vol. 24, No. 9, pp. 1957-1967.
Barber, D. G., and LeDrew, E. F., 1991. SAR Sea Ice Discrimination Using Texture Statistics: A Multivariate Approach, Photogrammetric Engineering & Remote Sensing, Vol.57, No.4, pp. 385-395.
Baraldi, A., and Parmiggiani, F., 1995. An Investigation of the Textural Characteristics Associated with Gray-level Co-occurrence matrix statistical parameters, IEEE Trans. on Geoscience and Remote Sensing, Vol. 33, No. 2, pp. 293-304.
Bharati, M. H., Liu, J. J., and MacGregor, J. F., 2004. Image Texture Analysis: Methods and Comparisons, Chemometrics and Intelligent Laboratory Systems, Vol. 72, pp. 57-71.
Conners, R. W., and Harlow, C. A., 1980. A Theoretical Comparison of Texture Algorithms, IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. PAMI-2, No. 3, pp. 204-222.
Clarke, K. C., 1986. Computation of the Fractal Dimension of Topographic Surfaces Using the Triangular Prism Surface Area, Computer and Geosciences, Vol. 12, No. 5, pp. 713-722.
Curran, P. J., 1988. The Semivariogram in Remote Sensing: An Introduction, Remote Sensing of Environment, Vol. 24, pp. 493-507.
Chen, W., Giger, M. L., Li, H., Bick, U., and Newstead, G. M., 2007. Volumetric Texture Analysis of Breast Lesions on Contrast-Enhanced Magnetic Resonance Images, Magnetic Resonance in Medicine, Vol. 58, pp. 562-571.
Du Buf, J. M. H., Kardan, M., and Spann, M., 1990. Texture Feature Performance for Image Segmentation, Patern Recognition, Vol. 23, pp. 291-309.
Datt, B., Mcvicar, T. R., Van Niel, T. G., Jupp, D. L. B., and Pearlman, J. S., 2003. Preprocessing EO-1 Hyperion Hyperspectral Data to Support the Application of Agricultural Index, IEEE Trans. on Geoscience and Remote Sensing, Vol. 41, No.6, pp. 1246-1259.
Galloway, M. M., 1975. Texture Analysis Using Gray Level Run Lengths, Computer Graphics and Image Processing, Vol. 4, pp. 172-179.
Gonzalez, R. C., and Woods, R. E., 2002. Digital Image Processing, 2nd Edition, Prentice Hall, New Jersey, 665 p.
Gao, D., 2003. Volume Texture Extraction for 3D Seismic Visualization and Interpretation, Geophysics, Vol. 4, pp.1294-1302.
Haralick, R. M., Shanmugan, K., and Dinstein, I., 1973. Texture Features for Image Classification, IEEE Trans. Sys. Man Cyber, Vol. 3, No. 6, pp. 610-621.
He, D. C., Wang, L., and Guibert, J., 1987. Texture Discrimination Based on an Optimal Utilization of Texture Features, Pattern Recognition, Vol. 2, pp. 141-146.
Hornak, J. P., 2008. The Basics of MRI, http://www.cis.rit.edu/htbooks/ mri/index.html, Last Accessed on March, 12, 2009.
Jobanputra, R., and Clausi, D. A., 2004. Texture Analysis Using Gaussian Weighted Grey Level Co-occurence Probabilities, Computer and Robot Vision, 2004, Proceedings, First Canadian Conference on, 17-19 May, 2004, pp. 51-57.
Jobanputra, R., and Clausi, D. A., 2006. Preserving Boundaries for Image Texture Segmentation Using Grey Level Co-occurence Probabilities, Patern Recognition, Vol. 39, pp. 234-245.
Marceau, D. J., Howarth, P. J., Dubois, J.-M. M., and Gratton, D. J., 1990. Evaluation of the Grey-Level Co-occurrence Matrix Method, For Land-Cover Classification Using SPOT Imagery, IEEE Trans. on Geoscience and Remote Sensing, Vol. 28, No. 4, pp. 513-519.
Materka, A., and Strzelecki, M., 1998. Texture Analysis Methods–A Review, COST B11 report, Technical University of Lodz.
Mahmoud-Ghoneim, D., Toussaint, G., and Constans, J.-M., 2003. Three Dimensional Texture Analysis in MRI: A Preliminary Evaluation in Gliomas, Magnetic Resonance Imaging, Vol. 21, pp. 983-987.
Tuceryan, M., and Jain, A. K., 1998. Texture Analysis, The Handbook of Pattern Recognition and Computer Vision, pp. 207-248.
Tsai, F., and Chou, M. J., 2006. Texture Augmented Analysis of High Resolution Satellite Imagery in Detecting Invasive Plant Species, Journal of the Chinese Institute of Engineers, Vol. 29, No. 4, pp. 582-592.
Tsai, F., Chang, C. K., Rau, J. Y., Lin, T. H., and Liu, G. R., 2007a. 3D Computation of Gray Level Co-occurrence in Hyperspectral Image Cubes, LNCS, Vol. 4679, pp. 429-440.
Tsai, F., Lin, E. K., and Yoshino, K., 2007b. Spectral Segmented Principal Component Analysis of Hyperspectral Imagery for Mapping Invasive Plant Species, International Journal of Remote Sensing, Vol. 28, No. 5-6, pp. 1023-1039.
Weszka, J. S., Dyer, C. R., and Rosenfeld, A., 1976. A Comparative Study of Texture Measures for Terrain Classification, IEEE Trans. Sys. Man Cyber, Vol. SMC-6, No. 4, pp. 269-285.
Zawadzki, J., Cieszewski, C. J., Zasada, M., and Lowe, R. C., 2005. Applying Geostatistics for Investigations of Forest Ecosystems Using Remote Sensing Imagery, Silva Fennica, Vol. 39, No. 4, pp. 599-617.
指導教授 蔡富安(Fuan Tsai) 審核日期 2009-7-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明