共/貝第/頁

(1) A spherical charge distribution is given by .

$$\rho = \rho_0 (1 - \frac{r^2}{a^2}), \qquad (r \le a)$$

$$\rho = 0, \qquad (r > a)$$

- (a) Calculate the total charge Q=? (5%)
- (b) Find the electric field intensity \vec{E} and the potential V outside the charge distribution. (5%)
- (c) Find \bar{E} and V inside. (5%)
- (d) Where is the maximum value of \vec{E} ? (5%)
- (2) A long wire of radius a carries a current I and is surrounded by a long hollow iron cylinder. The inner radius of the cylinder is b and the outer radius c.
 - (a) Compute the flux of \bar{B} inside a section of the cylinder I meters long. (5%)
 - (b) Find the equivalent current density on the inner and outer iron surfaces, and find the direction of the equivalent currents relative to the current in the wire. (5%)
 - (c) Find the equivalent current density inside the iron. (5%)
 - (d) Find \vec{B} at the distances r > c from the wire, llow will this value be affected if the iron cylinder were removed ? (5%)
- (3) Show that both the normal and tangential components of the vector potential $\vec{\lambda}$ are continuous across the interface between two media if the currents are constant. (10%)
- (4) In general, the electric field and the magnetic field are discontinuous at a boundary between two different media and at a surface which carries charge density σ or current density \bar{K} .
 - (a) Write down the integral form of Maxwell equations. (10%)
 - (b) Deduce the discontinuities of the fields . (15%)
- (5) For a monochromatic plane wave in free space has the amplitude of the electric field $E_{\rm o}$, angular frequency ω , and phase angle zero. If the electromagnetic wave is traveling in the negative y-direction and polarized in the x-direction,
 - (a) Write down the electric and magnetic fields. (10%)
 - (b) Calculate the energy density stored in the wave. (5%)
 - (c) Calculate the energy flux density transported by the electromagnetic field, (5%)
 - (d) Calculate the momentum density stored in the wave. (5%)

