1. Draw Lewis diagrams, geometry and symmetry element for the following molecules and ions. (12 points)

(a)
$$S_2O_4^{2-}$$
 (b) $Te_2O_2F_8$ (c) SeO_2F_2

Predict the order of IR-active CO stretching frequencies for the following compounds: (8 points)

- Identify the lowest-energy spin-allowed transitions for high-spin [Co(Hi)6]2+ and low-spin $Co(Lo)6^{2+}$. (10 points)
- 4. Explain why the ligand field (d-d) bands are shifted only slightly for [CoX(NH₃)₆]²⁺ ions (X= F⁻, Cl⁻, Br⁻ and I⁻), but charge-transfer bands are shifted greatly fir this series. (10 points)
- Propose a mechanism for the olefin hydrogenation using Wilkinson's catalyst, Rh(PPh₃)₃Cl. (10 points)
- 6. The problem of chemical conversion (nitrogen "fixation") of N2 to NH3 is a significant one that illustrates the importance of thermodynamic concepts. Consider the relative ease of the steps

$$N_2 \stackrel{H_2}{\longrightarrow} N_2H_2 \stackrel{H_2}{\longrightarrow} N_2H_4 \stackrel{H_2}{\longrightarrow} 2NH_3$$

Which step is most costly (in terms of energy), and which of the species N2, N2H2, or N₂H₄ therefore requires the greatest chemical activation (either by extreme temperature conditions or by catalytic combination) so as to weaken the NN link? The first three species exhibit a lone pair on each nitrogen. How does the lp/lp repulsion increase for $N_2 \rightarrow N_2H_2$ compare with that of $N_2H_2 \rightarrow N_2H_4$? (10 points)

- Propose a rationale for the good solubility of BF₃ in benzene. Can you identify a HOMO and LUMO for the interaction? (10 points)
- 8. Name all types of chemical bonding in inorganic compounds and metals, briefly describes their characteristic properties and the similarity and difference between each other. (10 points)
- 9. Cadium sulfide, which has been tested as a photoconductor for xerography, is a semiconducting material with a band gap of 2.42 eV. (1eV equal to 96.5 kJ/mol.) What is the minimum wavelength of light needed to promote electrons from the valence band to the conduction band in CdS? What color of light is this? (10 points)
- Give steps for syntheses of the following compounds from the elements. (10 points)