(a) The adjoint M^{\dagger} of a matrix M is defined as the transpose of the complex conjugate of M, (1) (25 points) i.e., $M^{\dagger} = (M^*)^t$. A matrix is called normal if it commutes with its adjoint, i.e., $[M, M^{\dagger}] =$ $MM^{\dagger} - M^{\dagger}M = 0$. Show that the eigenvectors correspond to different eigenvalues of a normal matrix are orthogonal to each other.

(b) Find the eigenvalues and eigenvectors of the matrices

$$\begin{pmatrix} 1 & -\epsilon \\ -\epsilon & 1 \end{pmatrix}$$
, and $\begin{pmatrix} 1 & 1 \\ \epsilon^2 & 1 \end{pmatrix}$.

When $\epsilon \to 0$, what happens to the eigenvectors of the above two matrices.

(2) (25 points)

Plane elliptic coordinates (u,v) is defined as $x = a \cosh(u) \cos(v)$, $y = a \sinh(u) \sin(v)$, where

(x, y) is the Cartesian coordinates. (a) If u is a constant, varying v describes a curve on the plane called coordinate curve of u. Find the equation of this curve in terms of x and y. Similarly, work out the coordinate curve of v. Sketch the coordinate curves (for different u and v) in the x-y plane.

(b) Calculate $\partial/\partial x$ and $\partial/\partial y$ in elliptic coordinates.

(3) (25 points)

Define Laplace transform as:

$$L\{f(t)\} \equiv F(p) = \int_0^\infty f(t) \, e^{-pt} \, \mathrm{d}t \, .$$

(a) Derive the Laplace transforms of $t^n f(t)$ and $d^m f(t)/dt^m$. Thus find the Laplace transform of

(b) Derive the Laplace transforms of $\cos(t)$ and $\sin(t)$. Hence solve the equation for t>0

$$\frac{\mathrm{d}x}{\mathrm{d}t} + ax = b\cos(t)\,,$$

where a and b are constants, and x(0) = 1.

(4) (25 points)

Consider the linear partial differential equation

$$\frac{\partial^2 U}{\partial t^2} = P(x,t) \frac{\partial^2 U}{\partial x^2} \,,$$

where P(x,t) > 0 for all x and t.

(a) What is the meaning of linear? What is the name of this equation? Find the general solution

of the equation if $P(x,t) \equiv 1$. (b) A function $U(x,t) = \sum_{n=1}^{\infty} U_n(x,t)$ satisfies the partial differential equation above, and the boundary conditions $U_n(1,t) = U_n(2,t) = 0$. If

$$U_n(x,t) = [A_n \cos(\omega_n t) + B_n \sin(\omega_n t)] \sqrt{x} \sin[\kappa_n \log_e(x)]$$

where A_n and B_n are constants, find P(x,t) and all possible values of κ_n and ω_n .